
Version 10.5

Geometry I

Makoto Asai (SLAC)
Geant4 Tutorial Course

Contents

• Introduction

• G4VUserDetectorConstruction class

• Solid and shape

• Logical volume

• Region

• Physical volume

• Placement

Geometry I - M.Asai (SLAC) 2

Version 10.5

Introduction

Detector geometry

• Three conceptual layers

– G4VSolid -- shape, size

– G4LogicalVolume -- daughter physical volumes,

material, sensitivity, user limits, etc.

– G4VPhysicalVolume -- position, rotation

Geometry I - M.Asai (SLAC) 4

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Define detector geometry
• Basic strategy

G4VSolid* pBoxSolid =

new G4Box(“aBoxSolid”,

1.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =

new G4LogicalVolume(pBoxSolid,

pBoxMaterial, “aBoxLog”, 0, 0, 0);

G4VPhysicalVolume* aBoxPhys =

new G4PVPlacement(pRotation,

G4ThreeVector(posX, posY, posZ),

pBoxLog, “aBoxPhys”, pMotherLog,

0, copyNo);

• A volume is placed in its mother volume. Position and rotation of the daughter volume is
described with respect to the local coordinate system of the mother volume. The origin of
mother volume’s local coordinate system is at the center of the mother volume.

– Daughter volume cannot protrude from mother volume.
Geometry I - M.Asai (SLAC) 5

Solid : shape and sizeLogical volume :
+ material, sensitivity, etc.

Physical volume :
+ rotation and position

Geometrical hierarchy
• One logical volume can be placed more than

once. One or more volumes can be placed to a
mother volume.

• Note that the mother-daughter relationship is an
information of G4LogicalVolume.
– If the mother volume is placed more than

once, all daughters are by definition appear
in all of mother physical volumes.

• The world volume must be a unique physical
volume which fully contains all the other
volumes.
– The world volume defines the global

coordinate system. The origin of the global
coordinate system is at the center of the
world volume.

– Position of a track is given with respect to
the global coordinate system.

Geometry I - M.Asai (SLAC) 6

Version 10.5

G4VUserDetectorConstruction

User classes
• main()

– Geant4 does not provide main().
Note : classes written in red are mandatory.

• Initialization classes
– Use G4RunManager::SetUserInitialization() to define.
– Invoked at the initialization

• G4VUserDetectorConstruction
• G4VUserPhysicsList
• G4VUserActionInitialization

• Action classes
– Instantiated in G4VUserActionInitialization.
– Invoked during an event loop

• G4VUserPrimaryGeneratorAction
• G4UserRunAction
• G4UserEventAction
• G4UserStackingAction
• G4UserTrackingAction
• G4UserSteppingAction

Geometry I - M.Asai (SLAC) 8

G4VUserDetectorConstruction

class G4VUserDetectorConstruction
{

public:
G4VUserDetectorConstruction();
virtual ~G4VUserDetectorConstruction();

public:
virtual G4VPhysicalVolume* Construct() = 0;
virtual void ConstructSDandField();

public:
void RegisterParallelWorld(G4VUserParallelWorld*);

Geometry I - M.Asai (SLAC) 9

Construct() should return the pointer of the world physical
volume. The world physical volume represents all of your
geometry setup.

Sensitive detector and field should be instantiated and set to
logical volumes in ConstructSDandField() method.

Your detector construction
#ifndef MyDetctorConstruction_h
#define MyDetctorConstruction_h 1
#include “G4VUserDetectorConstruction.hh”
class MyDetctorConstruction

: public G4VUserDetectorConstruction
{
public:
G4VUserDetectorConstruction();
virtual ~G4VUserDetectorConstruction();
virtual G4VPhysicalVolume* Construct();
virtual void ConstructSDandField();
public:
// set/get methods if needed
private:
// granular private methods if needed
// data members if needed

};
#endif

Geometry I - M.Asai (SLAC) 10

Describe your detector
• Derive your own concrete class from G4VUserDetectorConstruction abstract

base class.

• Implement Construct() and ConstructSDandField() methods
1) Construct all necessary materials
2) Define shapes/solids
3) Define logical volumes

4) Place volumes of your detector geometry
5) Associate (magnetic) field to geometry (optional)

6) Instantiate sensitive detectors / scorers and set them to corresponding
logical volumes (optional)

7) Define visualization attributes for the detector elements (optional)

8) Define regions (optional)

• Set your construction class to G4RunManager or G4MTRunManager

Geometry I - M.Asai (SLAC) 11

Version 10.5

Solid and shape

G4VSolid

• Abstract class. All solids in Geant4
are derived from it.

• It defines but does not implement all
functions required to:
– compute distances between the

shape and a given point
– check whether a point is inside

the shape
– compute the extent of the shape
– compute the surface normal to

the shape at a given point
• User can create his/her own solid

class.

Geometry I - M.Asai (SLAC) 13

Solids

Geometry I - M.Asai (SLAC) 14

4 Solids defined in Geant4:

4 CSG (Constructed Solid Geometry) solids

4 G4Box, G4Tubs, G4Cons, G4Trd, …

4 Analogous to simple GEANT3 CSG solids

4 Specific solids (CSG like)

4 G4Polycone, G4Polyhedra, G4Hype, …

4 Tessellated solid

4 Solid made by facets

4 Boolean solids

4 G4UnionSolid, G4SubtractionSolid, …

CSG: G4Box, G4Tubs

G4Box(const G4String &pname, // name

G4double half_x, // X half size

G4double half_y, // Y half size

G4double half_z); // Z half size

G4Tubs(const G4String &pname, // name

G4double pRmin, // inner radius

G4double pRmax, // outer radius

G4double pDz, // Z half length

G4double pSphi, // starting Phi

G4double pDphi); // segment angle

Geometry I - M.Asai (SLAC) 15

Other CSG solids

Geometry I - M.Asai (SLAC) 16

G4Cons

G4Para
(parallelepiped)

G4Trd

G4Trap

G4Sphere

G4Torus

Consult to Section 4.1.2 of Geant4
Application Developers Guide for all
available shapes.G4Orb

(full solid sphere)

http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/Detector/geomSolids.html

Specific CSG Solids: G4Polycone
G4Polycone(const G4String& pName,

G4double phiStart,

G4double phiTotal,

G4int numRZ,

const G4double r[],

const G4double z[]);

• numRZ - numbers of corners in the r,z space

• r, z - coordinates of corners

Geometry I - M.Asai (SLAC) 17

Other Specific CSG solids

Geometry I - M.Asai (SLAC) 18

G4Polyhedra

G4EllipticalTube G4Ellipsoid

G4EllipticalCone

G4HypeG4Tet
(tetrahedra)

G4TwistedBox G4TwistedTrdG4TwistedTrap

G4TwistedTubs

Consult to Section 4.1.2 of Geant4
Application Developers Guide for all available
shapes.

http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/Detector/geomSolids.html

Tessellated solids

• G4TessellatedSolid (since 8.1)
– Generic solid defined by a number of facets (G4VFacet)

• Facets can be triangular (G4TriangularFacet) or quadrangular
(G4QuadrangularFacet)

– Constructs especially important for conversion of complex
geometrical shapes imported from CAD systems

– But can also be explicitly defined:
• By providing the vertices of the facets in anti-clock wise order, in

absolute or relative reference frame
– GDML binding

Geometry I - M.Asai (SLAC) 19

Version 10.5

A CAD imported assembly
with tessellated solids

New solid library
• An important effort was begun in the last few years to write a new solid library,

reviewing at the algorithmic level most of the primitives and provides an enhanced,
optimized and well-tested implementation to be shared among software packages.

• In most cases considerable performance improvement was achieved.
– For example, the time required to compute intersections with the tessellated solid

was dramatically reduced with the adoption of spatial partitioning for composing
facets into a 3D grid of voxels.

• Such techniques allow speedup factors of a few thousand for relatively complex
structures having of order 100k to millions of facets, which is typical for geometry
descriptions imported from CAD drawings.
– Consequently, it is now possible to use tessellated geometries for tuning the

precision in simulation
by increasing the mesh
resolution, something
that was not possible
before.

Geometry I - M.Asai (SLAC) 21

New i
n v10.

4

Boolean Solids

Geometry I - M.Asai (SLAC) 22

4 Solids can be combined using boolean operations:
4 G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid

4 Requires: 2 solids, 1 boolean operation, and an (optional) transformation for
the 2nd solid

4 2nd solid is positioned relative to the coordinate system of the 1st solid
4 Result of boolean operation becomes a solid. Thus the third solid can be

combined to the resulting solid of first operation.
4 Solids to be combined can be either CSG or other Boolean solids.

G4UnionSolid G4IntersectionSolidG4SubtractionSolid

Boolean solid

Geometry I - M.Asai (SLAC) 23

Boolean Solids - example

Geometry I - M.Asai (SLAC) 24

G4VSolid* box = new G4Box(“Box",50*cm,60*cm,40*cm);

G4VSolid* cylinder

= new G4Tubs(“Cylinder”,0.,50.*cm,50.*cm,0.,2*M_PI*rad);

G4VSolid* union

= new G4UnionSolid("Box+Cylinder", box, cylinder);

G4VSolid* subtract

= new G4SubtractionSolid("Box-Cylinder", box, cylinder,

0, G4ThreeVector(30.*cm,0.,0.));

G4RotationMatrix* rm = new G4RotationMatrix();

rm->RotateX(30.*deg);

G4VSolid* intersect

= new G4IntersectionSolid("Box&&Cylinder",

box, cylinder, rm, G4ThreeVector(0.,0.,0.));

4 The origin and the coordinates of the combined solid are the same as those of
the first solid.

New “multi-union” solid
• In addition to a full set of highly optimized primitives and a tessellated solid, the library

includes a new "multi-union” structure implementing a composite set of many solids to
be placed in 3D space.

• This differs from the simple technique based on Boolean unions, with the aim of
providing excellent scalability on the number of constituent solids.

• The multi-union adopts a similar voxelization technique to partition 3D space, allowing
dramatically improved speed and scalability over the original implementation based on
Boolean unions.

Geometry I - M.Asai (SLAC) 25

New
in v
10.4

G4MultiUnion

G4MultiUnion* munion_solid = new G4MultiUnion(“UnitedBoxes");

for(int i=0 ; I < nNode ; i++)
{

G4Box* aBox = new G4Box(…);
G4ThreeVector pos = G4ThreeVector(…);
G4RotationMatrix rot = G4ThreeVector(…);
G4Transform3D tr = G4Transform3D(rot, pos);
munion_solid -> AddNode(*aBox, tr);

}

munion_solid -> Voxelize();

Note : G4MultiUnion is a solid. Use it to create a logical volume.

Geometry I - M.Asai (SLAC) 26

Version 10.5

G4LogicalVolume

G4LogicalVolume
G4LogicalVolume(G4VSolid* pSolid,

G4Material* pMaterial,

const G4String &name,

G4FieldManager* pFieldMgr=0,

G4VSensitiveDetector* pSDetector=0,

G4UserLimits* pULimits=0);

• Contains all information of volume except position and rotation
– Shape and dimension (G4VSolid)
– Material, sensitivity, visualization attributes
– Position of daughter volumes
– Magnetic field, User limits, Region

• Physical volumes of same type can share the common logical volume object.
• The pointers to solid must NOT be null.
• The pointers to material must NOT be null for tracking geometry.
• It is not meant to act as a base class.

Geometry I - M.Asai (SLAC) 28

Computing volumes and weights
• Geometrical volume of a generic solid or boolean composition can be

computed from the solid:

G4double GetCubicVolume();

– Exact volume is determinatively calculated for most of CSG solids, while
estimation based on Monte Carlo integration is given for other solids.

• Overall weight of a geometry setup (sub-geometry) can be computed from the
logical volume:

G4double GetMass(G4bool forced=false,

G4bool propagate=true, G4Material* pMaterial=0);

– The computation may require a considerable amount of time, depending

on the complexity of the geometry.

– The return value is cached and reused until forced=true.

– Daughter volumes will be neglected if propagate=false.

Geometry I - M.Asai (SLAC) 29

Version 10.5

Region

Region

• A region may have its unique
– Production thresholds (cuts)

• If a region in the mass geometry does not have its own production
thresholds, those of the default region are used (i.e., may not be those of
the parent region).

– User limits
• Artificial limits affecting to the tracking, e.g. max step length, max

number of steps, min kinetic energy left, etc.
• You can set user limits directly to logical volume as well. If both logical

volume and associated region have user limits, those of logical volume
wins.

– User region information
• E.g. to implement a fast Boolean method to identify the nature of the

region.
– Fast simulation manager
– Regional user stepping action
– Field manager

• Please note :
– World logical volume is recognized as the default region. User is not allowed

to define a region to the world logical volume.Geometry I - M.Asai (SLAC) 31

Root logical volume

• A logical volume can be a region. More
than one logical volumes may belong to
a region.

• A region is a part of the geometrical
hierarchy, i.e. a set of geometry
volumes, typically of a sub-system.

• A logical volume becomes a root logical
volume once a region is assigned to it.
– All daughter volumes belonging to

the root logical volume share the
same region, unless a daughter
volume itself becomes to another
root.

• Important restriction :
– No logical volume can be shared by

more than one regions, regardless
of root volume or not.

Geometry I - M.Asai (SLAC) 32

World Volume - Default Region

Root logical - Region A

Root logical -
Region B

G4Region

• A region is instantiated and defined by

G4Region* aRegion = new G4Region(“region_name”);

aRegion->AddRootLogicalVolume(aLogicalVolume);

– Region propagates down to all geometrical hierarchy until the bottom or
another root logical volume.

• Production thresholds (cuts) can be assigned to a region by

G4Region* aRegion

= G4RegionStore::GetInstance()->GetRegion(“region_name”);

G4ProductionCuts* cuts = new G4ProductionCuts;

cuts->SetProductionCut(cutValue);

aRegion->SetProductionCuts(cuts);

Geometry I - M.Asai (SLAC) 33

G4Region class

• G4Region class may take following quantities.

– void SetProductionCuts(G4ProductionCuts* cut);

– void SetUserInformation(G4VUserRegionInformation* uri);

– void SetUserLimits(G4UserLimits* ul);

– void SetFastSimulationManager(G4FastSimulationManager* fsm);

– void SetRegionalSteppingAction(G4UserSteppingAction* rusa);

– void SetFieldManager(G4FieldManager* fm);

• Please note:

– If any of the above properties are not set for a region, properties of the world

volume (i.e. default region) are used. Properties of mother region do not

propagate to daughter region.

Geometry I - M.Asai (SLAC) 34

Version 10.5

Physical volume

Detector geometry

• Three conceptual layers

– G4VSolid -- shape, size

– G4LogicalVolume -- daughter physical volumes,

material, sensitivity, user limits, etc.

– G4VPhysicalVolume -- position, rotation

Geometry I - M.Asai (SLAC) 36

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Define detector geometry

• Basic strategy
G4VSolid* pBoxSolid =

new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =

new G4LogicalVolume(pBoxSolid, pBoxMaterial,

“aBoxLog”, 0, 0, 0);

G4VPhysicalVolume* aBoxPhys =

new G4PVPlacement(pRotation,

G4ThreeVector(posX, posY, posZ), pBoxLog,

“aBoxPhys”, pMotherLog, 0, copyNo);

Geometry I - M.Asai (SLAC) 37

Physical Volumes
• Placement volume : it is one positioned volume

– One physical volume object represents one “real” volume.
• Repeated volume : a volume placed many times

– One physical volume object represents any number of
“real” volumes.

– reduces use of memory.

– Parameterised
• repetition w.r.t. copy number

– Replica and Division
• simple repetition along one axis

• A mother volume can contain either
– many placement volumes
– or, one repeated volume

Geometry I - M.Asai (SLAC) 38

repeated

placement

Physical volume

• G4PVPlacement 1 Placement = One Placement Volume
– A volume instance positioned once in its mother volume

• G4PVParameterised 1 Parameterized = Many Repeated Volumes
– Parameterized by the copy number

• Shape, size, material, sensitivity, vis attributes, position and rotation can
be parameterized by the copy number.

• You have to implement a concrete class of G4VPVParameterisation.
– Reduction of memory consumption
– Currently: parameterization can be used only for volumes that either

a) have no further daughters, or
b) are identical in size & shape (so that grand-daughters are safely fit inside).

– By implementing G4PVNestedParameterisation instead of
G4VPVParameterisation, material, sensitivity and vis attributes can be
parameterized by the copy numbers of ancestors.

Geometry I - M.Asai (SLAC) 39

Physical volume

• G4PVReplica 1 Replica = Many Repeated Volumes
– Daughters of same shape are aligned along one axis
– Daughters fill the mother completely without gap in between.

• G4PVDivision 1 Division = Many Repeated Volumes
– Daughters of same shape are aligned along one axis and fill the mother.
– There can be gaps between mother wall and outmost daughters.
– No gap in between daughters.

• G4ReflectionFactory 1 Placement = a pair of Placement volumes
– generating placements of a volume and its reflected volume
– Useful typically for end-cap calorimeter

• G4AssemblyVolume 1 Placement = a set of Placement volumes
– Position a group of volumes

Geometry I - M.Asai (SLAC) 40

Version 10.5

G4PVPlacement

G4PVPlacement
G4PVPlacement(

G4Transform3D(G4RotationMatrix &pRot, // rotation of daughter volume

const G4ThreeVector &tlate), // position in mother frame

G4LogicalVolume *pDaughterLogical,

const G4String &pName,

G4LogicalVolume *pMotherLogical,

G4bool pMany, // ‘true’ is not supported yet…

G4int pCopyNo, // unique arbitrary integer

G4bool pSurfChk=false); // optional boundary check

• Single volume positioned relatively to the mother volume.

Geometry I - M.Asai (SLAC) 42

rotation

Mother volume

translation in

mother frame

Alternative G4PVPlacement
G4PVPlacement(G4RotationMatrix* pRot, // rotation of mother frame

const G4ThreeVector &tlate, // position in mother frame

G4LogicalVolume *pDaughterLogical,

const G4String &pName,

G4LogicalVolume *pMotherLogical,

G4bool pMany, // ‘true’ is not supported yet…

G4int pCopyNo, // unique arbitrary integer

G4bool pSurfChk=false); // optional boundary check

• Single volume positioned relatively to the mother volume.

Geometry I - M.Asai (SLAC) 43

Mother volume

rotation

translation in

mother frame

Note:

• This G4PVPlacement is identical to the previous one if there is no rotation.

• Previous one is much easier to understand.

• The advantage of this second constructor is setting the pointer of the rotation

matrix rather than providing the values of the matrix.

• You may change the matrix without accessing to the physical volume.

• This is for power-users, though.

