Geant4 10.6 beta

Physics I: Physics Lists

Geant4 Tutorial at Chalk River
Dennis Wright (SLAC)
26 August 2019

Outline

Introduction
* What is a physics list? Why do we need it?

The Geant4 physics list interface
e G4VUserPhysicsList

Modular physics lists
* A more convenient way to go

Pre-packaged physics lists
* Provided by the toolkit

Examples

What is a Physics List?

An object responsible for:

» specifying all particles to be used in a simulation application
» specifying physics processes and assigning them to each particle type

One of three mandatory objects that the user must provide to the
G4RunManager in any application
* tells run manager what physics needs to be invoked and when

Provides a very flexible way to set up the physics environment

e user can choose and specify particles he wants
* user can choose the physics (processes) to assign to each particle

BUT, user must have a good understanding of the physics required to
describe the problem

* omission of relevant particles and/or physics interactions could lead to
poor modeling results

Why Do We Need a Physics List?

* Physics is physics — shouldn’t Geant4 provide, as a default, a complete set of
physics that everyone can use?

* NO:

there are many different approximations and models to describe the same
interaction

* very much the case for hadronic but also for electromagnetic physics
computation time is an issue:

* some users may want a less accurate but significantly faster model for a given interaction
while others need the most accurate description regardless of CPU time

there is no simulation application that would require all the particles and all the
possible interactions that Geant4 can provide
* e.g. most medical applications are not interested in multi-GeV physics

* For this reason Geant4 takes an atomistic, rather than an integral approach to
physics

provides many independent (for the most part) physics components (i.e. physics
processes)

users select these components in their custom-designed physics lists
exceptions: a few electromagnetic processes must be used together

Physics Processes Provided by Geant4

Electromagnetic physics
* “standard”: the default processes valid between ~keV and PeV
* "low energy”: processes available for ~100 eV to 1 PeV
* Geant4 DNA: valid down to ~eV (but only for liquid water)
* optical photons

Weak interactions

* decay of subatomic particles
* radioactive decay of nuclei

Hadronic physics
* pure strong interaction physics valid from 0 to ~1 TeV
* electro- and gamma-nuclear interactions valid from 10 MeV to ~TeV

* high precision neutron (and other particles) package valid from thermal
energies to ~20 MeV

Parameterized or “fast simulation” physics

Physics List Interface

e G4VUserPhysicslList is the Geant4 physics list interface

 All physics lists must derive from this base class
class YourPhysicsList: G4VUserPhysicsList {

YourPhysicsList();

~YourPhysicsList();

void ConstructParticle();

void ConstructProcess();

void SetCuts();

* User must implement the two pure virtual methods
ConstructParticle() and ConstructProcess()

e User can implement the SetCuts() method (optional)

Physics List Interface: ConstructParticle()

* Interface method defines list of particles to be used in the
application

e Can construct particles individually

void YourPhysicsList::ConstructParticle() {
G4Electron::Definition();
G4Gamma: :Definition();
G4Proton::Definition();

G4Neutron: :Definition();

e Or using toolkit-provided helper classes

void YourPhysicsList::ConstructParticle() {

G4BaryonConstructor baryonConstructor;
baryonConstructor.ConstructParticle();

G4BosonConstructor bosonConstructor;
bosonConstructor.ConstructParticle();

Physics List Interface: ConstructProcess()

* What is a process?

* an object that defines the way in which a specific particle interacts
with matter through a given type of interaction (e.g. electron
ionization)

* Interface method: defines the list of physics processes to be

used in the simulation for a given particle type
void YourPhysicsList::ConstructProcess() {

AddTransportation();

ConstructEM();

ConstructGeneral();

}

Physics List Interface: ConstructProcess()

void YourPhysicsList::ConstructEM() {

G4PhysicsListHelperx ph = G4PhysicsListHelper::GetPhysicsListHelper();
auto particleIterator = GetParticleIterator();
particleIterator—>reset();
((xparticleIterator)()) {
G4ParticleDefinitionx particleDef = particlelterator->value();

(particleDef == G4Gamma::Definition()) {

ph->RegisterProcess(G4GammaConversion(), particleDef);

(particleDef == G4Electron::Definition()) {

ph->RegisterProcess G4eBremsstrahlung(), particleDef);

) {

Physics List Interface: ConstructProcess()

void YourPhysicsList::ConstructGeneral() {

G4PhysicsListHelperk ph = G4PhysicsListHelper::GetPhysicsListHelper();
auto particlelterator = GetParticleIterator();
particlelterator—>reset();

G4Decayx theDecayProcess = G4Decay();

((xparticleIterator)()) {

G4ParticleDefinitionk particleDef = particlelterator->value();
(theDecayProcess->IsApplicable(xparticleDef)) {

ph->RegisterProcess(theDecayProcess, particleDef);

}

Physics List Interface: SetCuts()

* Interface method (optional):

void YourPhysicsList::SetCuts() {

defaultCutValue = 0.7%CLHEP: :mm;

SetCutValue(defaultCutValue, "gamma");
SetCutValue(defaultCutValue, "e-");
SetCutValue(defaultCutValue, "e+");
SetCutValue(defaultCutValue, "proton");

* Or asimpler (and equivalent) way:

void YourPhysicsList::SetCuts() {

}

G4double yourCutValue = 0.7%CLHEP: :mm;

SetDefaultCutValue(yourCutValue);

11

Modular Physics List

* Why use this?

e previous physics list example was very simple and incomplete

realistic physics lists will have many more particles and processes

such a list can be quite long, complicated and hard to maintain

* Modular physics list provides a solution:

interface is defined in G4VModularPhysicsList

this interface is derived from the G4VUserPhysicsList base class (as
YourPhysicsList in the previous example)

the transportation process is automatically added to all constructed
particles

allows the use of “physics modules”

a given physics module handles a well-defined category of physics
e.g. EM physics, hadronic physics, decay, etc.

12

Modular Physics List

class YourModularPhysicsList : G4VModularPhysicsList {

YourModularPhysicsList();
};
YourModularPhysicsList: :YourModularPhysicsList()
: G4WModularPhysicsList() {

defaultCutValue = 0.7%CLHEP: :mm;

RegisterPhysics(G4EmStandardPhysics());

RegisterPhysics(YourProtonPhysics());

Modular Physics List: Physics Constructors

* Physics constructor

* allows particles and their associated processes to be grouped
together according to a physics domain

* implements the G4VPhysicsConstructor
* can be viewed as a subset of a complete physics list

* user may create his own (e.g. YourProtonPhysics) or use pre-defined

physics constructors (G4EmStandardPhysics, G4DecayPhysics, ...)

class YourProtonPhysics : G4VPhysicsConstructor {

YourProtonPhysics(G4String& name = "proton-physics");

~YourProtonPhysics();

ConstructParticle();

ConstructProcess();

14

Packaged Physics Lists

Our examples dealt mainly with EM physics
A realistic physics list is found in basic example B3

modular physics list including standard EM physics and decay physics built
with physics constructors

good starting point to construct your own physics list
add other physics to suit your needs

Adding hadronic physics is more involved:

for any hadronic process, the user may choose from several “models”

choosing the most appropriate model for a given application requires
significant experience

Pre-packaged physics lists

provided by toolkit and developed for a few reference cases
ready-to-use, developed by experts in certain application areas

each pre-packaged list contains different combinations of EM and hadronic
physics
list of these found in toolkit at geant4/source/physics _lists/lists/include

15

Packaged Physics Lists

* Caveats:

* these lists are provided as a best guess of the physics needed in some given
use cases

e user is responsible for validating the particular physics list for a given
application and adding or removing physics if necessary

* intended as starting points or templates

* Production physics lists
* used by a large user groups such as ATLAS and CMS
* well-maintained and tested

* very stable: fewer changes, less frequent updates

* Pre-packaged physics lists
* provided by toolkit and developed for a few reference cases
* ready-to-use, developed by experts in certain application areas
» extensively validated by developers and the user communities
 FTFP_BERT, QGSP_BERT, QGSP_FTFP_BERT_EMV, FTFP_BERT_HP, ...

16

Packaged Physics Lists: Naming Convention

Hadronic options

QGS — quark gluon string model (> ~15 GeV)

FTF — FRITIOF QCD string model (>~ 5 GeV)

BERT — Bertini cascade (< ~12 GeV)

BIC — Binary interaction cascade (<~ 10 GeV)

P — G4Precompound deexcitation model

HP — high precision neutron, proton, d, t, 3He, alpha interaction model (< 20 MeV)

Electromagnetic options

no suffix — standard EM physics (the default GAEmStandardPhysics constructor)
EMV — G4EmStandardPhysics_optionl (HEP, fast but less precise)

EMY — G4EmStandardPhysics_option3 (tuned for medical, space applications)
EMZ — G4AEmStandardPhysics_option4 (most precise EM physics, slower)

Name decoding: string_cascade_neutron EM

Complete list of pre-packaged physics lists with detailed descriptions in
“Guide for Physics Lists” : geant4-userdoc.web.cern.ch/geant4-
userdoc/UsersGuides/PhysicsListGuide/html/index.html

17

Packaged Physics Lists: Naming Convention Examples

* FTFP_BERT

recommended by Geant4 developers for HEP applications
includes standard EM physics g model (>~ 4 GeV)

FTF — FRITIOF string model +

P — G4Precompound deexcitation model

Bertini cascade (< ~12 GeV)

« QGSP BIC HP

recommended for medical applications

QGS — quark gluon string model (> 12 GeV)

FTF — FRITIOF string model (9.5 - 25 GeV)

P — G4Precompound deexcitation model

BIC — Binary interaction cascade (200 MeV — 9.9 GeV)

HP — high precision neutron, proton, d, t, 3He, alpha interaction
model (< 20 MeV)

18

Example Using Physics Constructors

» QGSP_BIC_HP_EMZ

* not currently a packaged list — we’re going to to build it here

 using constructors G4HadronPhysicsQGSP_BIC and
G4EmStandard_option4 (EMZ)

class YourQGSP_BIC_HP_EMZ : G4VModularPhysicsList {

YourQGSP_BIC_HP_EMZ();

YourQGSP_BIC_HP_EMZ: :YourQGSP_BIC_HP_EMZ()
: G4WodularPhysicsList() {

defaultCutValue = 0.7%CLHEP: :mm;
RegisterPhysics(G4EmStandardPhysics_option4());

RegisterPhysics(G4HadronPhysicsQGSP_BIC_HP());

19

Example Using Reference Physics Lists

» QGSP_BIC_HP EMZ

* the QGSP_BIC_HP reference physics list includes all the above physics
constructors (but with standard EM physics)

* G4PhysicsListFactory knows about all the available reference lists and
makes possible the replacement of one EM option with another

GAMULTITHREADED
G4MTRunManagerx runManager = G4MTRunManager;

runManager—>SetNumber0fThreads(4);

G4RunManagerk runManager = G4RunManager;

G4PhysListFactory physListFactory;

G4String pWName = "QGSP_BIC_HP_EMZ";
G4VModularPhysicsList* pList = physListFactory.GetReferencePhysList(plName);

runManager—>SetUserInitialization(pList);

20

summary

All particles, physics processes and production cuts needed for a
specific application must be defined in a physics list

Two kinds of physics list interfaces are available for users:
* G4VUserPhysicsList — for relatively simple physics environments
* G4VModularPhysicsList — for more complex physics environments

Some reference physics lists are provided by Geant4 developers
which may be used as starting points

e pure EM physics constructors
e complete hadronic, EM and extra physics

Choosing the appropriate physics for a given application requires
care and validation

21

