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❖ Accurate neutrino measurements:

• Mass hierarchy

• Oscillations

• CP violation

• Beyond 3 flavours? 

❖ Precise knowledge  
of 𝝂 numbers         
 

         Neutrino Cross Section

❖ Need precise E𝝂 reconstruction

86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible

The Long-Baseline Neutrino Experiment
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❖ To reconstruct E𝝂: 

• Measure energy of all final state particles  
and add them up “Calorimetric method”

• In a realistic experiment not all energies  
can be accurately measured  
see S. Li and U. Mosel’s talks

• Cross section model needed to improve  
energy measurement by filling in the  
missing information 

• e.g., to go from total ionisation charge  
in LAr in DUNE or light in NOvA,  
need to predict its composition  

 

             requires accurate physical model of interaction

Energy Reconstruction

!4
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FIG. 2. An example simulated 4 GeV ⌫µ event using GENIE

and FLUKA. The magenta energy deposits are caused by neu-
trons undergoing multiple scatterings; the orange color de-
notes energy originally carried by the prompt charged pion.

interactions (not shown). All these prompt particles
then propagate through the detector and—in addition to
ionization—can cause secondary interactions, knocking
out extra nucleons, as well as creating pions and � rays.
Bremsstrahlung radiation and nuclear de-excitations pro-
duce additional, low-energy �’s. To relate the resulting
ionization charge to the neutrino energy, full modeling of
the propagation process is required.

Even before running the full simulations, however, it
should be obvious that not all of the original neutrino
energy ends up in detectable ionization charge. Let us
consider some examples. First, the propagation process
increases particle multiplicity and reduces their average
energies. As the resulting cascade fully develops, some
particles become di�cult to detect. One is therefore nat-
urally led to the concept of detection thresholds as one
of the ways energy can be missed. Second, propagat-
ing hadrons can disrupt a number of argon nuclei in the
medium. The energy spent on this nuclear breakup does
not all translate to ionization. Third, some energy goes
to neutrinos in pion and muon decays, which escape the
detector. Our first task is to quantify the contributions of
these and other energy loss channels to the overall energy
flow in DUNE events.

Figure 2 shows an actual event from our simulations,
in which a muon, a ⇡

+, a proton, and two neutrons are
exiting the primary vertex. All the phenomena outlined
above are present. The charged hadrons are seen to un-
dergo secondary interactions, creating additional tracks.
The neutrons, being neutral, themselves do not leave ion-

ization tracks and can only be seen through charged par-
ticles created in secondary interactions. Their energy is
dissipated via numerous subthreshold particles and nu-
clear breakup. As will be seen later, they can also cre-
ate secondary hadronic showers, and these can be me-
ters away from the primary interaction. Neutrons thus
present a special challenge and we designate them in a
special category.

Notice that these considerations apply to both prompt
and secondary particles; to quantify the importance of
each missing energy channel one has to model the entire
event. Accordingly, we built a framework which combines
a neutrino event generator, GENIE, with a propagation
code, FLUKA. Using this framework, we model neutrino
and antineutrino interactions inside a liquid argon detec-
tor and simulate a large number of scattering events for
the energies relevant to DUNE.

The presentation is organized as follows. We begin, in
Sec. III, by reviewing the processes occurring in the pri-
mary interaction vertex and describing the prompt par-
ticles that can be created. We then describe how each
of these particle types propagate through the detector
medium, liquid argon. This part is essential for under-
standing the physics behind our findings. However, it can
be skipped at first reading by readers primarily interested
in our simulation results.

After this introduction, in Sec. IV A, we discuss a small
set of our simulated events, which will be seen to have
both sizable average missing energy and large event-to-
event variations. This motivated our two main analysis
goals.

The first goal is to establish the average contribution
of each missing energy channel. This question is an-
swered in Sec. IV B as a function of neutrino energy, for
both neutrino and antineutrino scattering. This estab-
lishes the average conversion functions between visible
charge and the true neutrino energy. Our second goal
is to characterize the event-by-event dispersion in the
visible charge. This dispersion leads to an intrinsic lim-
itation on how well the hadronic energy of each event
can be reconstructed, i.e., to finite energy resolution. We
report, in Sec. IV C, the resolution numbers of our sim-
ulations, under di↵erent sets of assumptions about re-
construction performance. This procedure yields a set of
migration matrices, connecting visible and true hadronic
energies, which can be used as inputs to oscillation stud-
ies. The implications of these results are further studied
in Sec. IV B. We compare the impact of di↵erent im-
provements on the energy resolution, which can inform
experimental priorities. We also categorize energy loss
channels in those that can be improved and those that
are intrinsic to this detector technology. Broader im-
plications of our results and outlook for the future are
presented in Sec. VI.

Friedland&Li’19

Talk by D.Ruterbories, MINERvA

Pins2019 – July 15 2019 Daniel Ruterbories (Rochester)

What do events look like
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❖ To reconstruct E𝝂: 

• Measure energy of all final state particles  
and add them up “Calorimetric method”

• In a realistic experiment not all energies  
can be accurately measured  
see S. Li and U. Mosel’s talks

• Cross section model needed to improve  
energy measurement by filling in the  
missing information 

• e.g., to go from total ionisation charge  
in LAr in DUNE or light in NOvA,  
need to predict its composition  

 

             requires accurate physical model of interaction

Energy Reconstruction
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Talk by J. Wolcott, NOvA

Emilie Passemar J. Wolcott / Tufts U.July 14, 2019 / PINS 2019 17

Muon neutrinos in both (functionally identical) detectors:

3-�avor neutrino oscillations
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Physical Processes Involved

As discussed before

❖ Quasi elastic scattering

❖ One pion production through resonances

❖ Non-resonant pion production

❖ Deep Inelastic Scattering

❖ Final State Interactions
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Physical Processes Involved

As discussed before

❖ Quasi elastic scattering

❖ One pion production through  
resonances

❖ Non-resonant pion production

❖ Deep Inelastic Scattering

❖ Final State Interactions
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General formula for cross section 
contains a product of the leptonic 
and hadronic tensors 

Pauli blocking p > pF Energy transfer > EB 

P. Vogel

Emilie Passemar



Quasi-elastic (QE) scattering 
Hadronic matrix element involved:  
 

❖              and             can be extracted from precision electron data at  
Mainz (Bernauer et al, A1 coll.’06) and JLab 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⟨p(p′�) |J+μ
W |n(p)⟩ ∝ ūp(p′�){γμFV

1 (q2)+
i

2mN
σμνqνFV

2 (q2)+γμγ5FA(q2) +
1

mN
qμγ5FP(q2)}u(n)(p)

FV
1 (q2) FV

2 (q2)

Emilie Passemar

q2 = (p′�− p)2; Q2 ≡ − q2



Quasi-elastic (QE) scattering 
Hadronic matrix element involved:  
 

❖              and             can be extracted from precision electron data at  
Mainz (Bernauer et al, A1 coll.’06) and JLab

❖            the pseudo-scalar Form Factor is related to 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⟨p(p′�) |J+μ
W |n(p)⟩ ∝ ūp(p′�){γμFV

1 (q2) +
i

2mN
σμνqνFV

2 (q2) + γμγ5FA(q2) +
1

mN
qμγ5FP(q2)}u(n)(p)

FV
1 (q2) FV

2 (q2)

FP(q2) FA(q2)

FP(q2) =
2m2

N

m2
π − q2

FA(q2)
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Quasi-elastic (QE) scattering 
Hadronic matrix element involved:  
 

❖              and             can be extracted from precision electron data at  
Mainz (Bernauer et al, A1 coll.’06) and JLab

❖            the pseudo-scalar Form Factor is related to

❖ The main unknown is            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Quasi-elastic (QE) scattering 
Hadronic matrix element involved:  
 

❖              and             can be extracted from precision electron data at  
Mainz (Bernauer et al, A1 coll.’06) and JLab

❖            the pseudo-scalar Form Factor is related to

❖ The main unknown is            

•             provides the largest contribution to the QE cross section 
at 1 GeV  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⟨p(p′�) |J+μ
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Cannot be determined from electron scattering data

FA(q2)
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Quasi-elastic (QE) scattering 
Hadronic matrix element involved:  
 

❖              and             can be extracted from precision electron data at  
Mainz (Bernauer et al, A1 coll.’06) and JLab

❖            the pseudo-scalar Form Factor is related to

❖ The main unknown is            

•             provides the largest contribution to the QE cross section 
at 1 GeV  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⟨p(p′�) |J+μ
W |n(p)⟩ ∝ ūp(p′�){γμFV

1 (q2) +
i

2mN
σμνqνFV

2 (q2) + γμγ5FA(q2)+
1

mN
qμγ5FP(q2)}u(n)(p)

FV
1 (q2) FV

2 (q2)

FP(q2) FA(q2)

FA(q2)

Cannot be determined from electron scattering data

FA(q2)

         In the following focus on FA(q2)



What is know on the Axial Form Factor?
❖ Old problem

❖ Traditionally it was assumed to follow a simplistic parametrisation  
 
 
 
 

• The parameters are                    and the axial mass MA  
 

               

!13

         the dipole parametrisationFA(q2) =
FA(0)

(1 − q2

M2
A )

2

gA ≡ FA(0)
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What is know on the Axial Form Factor?
❖ Old problem

❖ Traditionally it was assumed to follow a simplistic parametrisation  
 
 
 
 

• The parameters are                    and the axial mass MA  
 

                determined using a combination of processes 

• Neutrino nucleon cross section:

• Pion electroproduction  

!14

         the dipole parametrisationFA(q2) =
FA(0)

(1 − q2

M2
A )

2

gA ≡ FA(0)

σ (νN → ℓN)

Axial structure of the nucleon 11

3.2. Determination of the axial form factor II: Electroproduction formalism

Consider now pion electroproduction off nucleons,

γ⋆(k2) + N1(p1) → πa(q) + N2(p2) , (23)

where γ⋆ denotes the virtual photon with virtuality k2 < 0, Ni(pi) (i = 1, 2) the

initial/final nucleon and πa(q) the pion with Cartesian isospin a = (0, +,−) and four–

momentum qµ. We will also use the positive definite quantity Q2 = −k2. The pertinent
Mandelstam variables are s = (p1 + k)2, t = (p1 − p2)2 and u = (p1 − q)2, subject

to the constraint s + t + u = 2m2 + M2
π + k2, with Mπ the pion mass. In the Born

(one-photon-exchange) approximation, the corresponding coincidence cross section can

be factorized as [73]

dσ

dE ′
e dΩ′

e dΩ⋆
π

= Γv
dσv

dΩ⋆
π

, (24)

where Γv is the virtual photon flux, E ′
e, Ω′

e the energy and the solid angle of the scattered

electron, and dσv/dΩ⋆
π is the virtual photon cross section in the centre-of-mass frame

of the final πN system, as denoted by the star. It can be further decomposed into

transverse, longitudinal and two interference parts,

dσv

dΩ⋆
π

=
dσT

dΩ⋆
π

+ ϵ⋆
L

dσL

dΩ⋆
π

+
√

2 ϵ⋆
L(1 + ϵ)

dσLT

dΩ⋆
π

cos φπ + ϵ
dσTT

dΩ⋆
π

cos 2φπ (25)

with the transverse (ϵ) and longitudinal (ϵ⋆
L = −k2ϵ/k⋆2

0 ) polarizations of the virtual

photon fixed by the electron kinematics. In parallel kinematics (θ⋆
π = θπ = 0◦, with θπ

the polar angle in the scattering plane as seen in the laboratory system) the interference

parts vanish. Therefore, at constant four–momentum transfer, the transverse and the

longitudinal cross sections can be separated using the Rosenbluth method by varying ϵ,

dσv

dΩ⋆
π

=
dσT

dΩ⋆
π

− ϵ
k2

k⋆2
0

dσL

dΩ⋆
π

. (26)

(Note that often the photon energy is denoted by ω, however, here this symbol is entirely

reserved for the pion energy). At low energies, the connection to theory is most easily

made by means of the multipole expansion. For doing that, one considers the transition

current related to equation (23), which can be decomposed in terms of six invariant

amplitudes (we follow the conventions and notations of reference [74], see also [75])

ϵ · T (p2, s2; q, a|p1, s1; k) = i ū2 γ5

6∑

i=1

ϵ · Mi Ai(s, u) u1 , (27)

with si the spin index of nucleon i. The explicit forms of the operators Mi can be found
in [74] and the Ai are invariant functions that depend on two kinematical variables.

Here, we have chosen the Mandelstam variables s and u. The amplitudes Ai(s, u) have

the isospin decomposition

Ai(s, u) = A(+)
i (s, u) δa3 + A(−)

i (s, u) 1
2 [τa, τ3] + A(0)

i (s, u) τa . (28)

Emilie Passemar



❖ Up to recently good agreement between all determination of FA

What is know on the Axial Form Factor?
Axial structure of the nucleon 4

(anti)neutrino scattering off protons [8, 9, 10], off deuterons [11]-[16] and other nuclei (Al,

Fe) [17, 18] or composite targets like freon [19]-[22] and propane [22, 23]. In the left panel

of figure 1 we show the available values for the axial mass MA obtained from neutrino

scattering experiments. As pointed out in [24], references [17, 19, 20, 23] reported
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Figure 1. Axial mass MA extractions. Left panel: From (quasi)elastic neutrino
and antineutrino scattering experiments. The weighted average is MA = (1.026 ±
0.021)GeV. Right panel: From charged pion electroproduction experiments. The
weighted average is MA = (1.069 ± 0.016)GeV. Note that value for the MAMI
experiment contains both the statistical and systematical uncertainty; for other values
the systematical errors were not explicitly given. The labels SP, DR, FPV and BNR
refer to different methods evaluating the corrections beyond the soft pion limit as
explained in the text.

severe uncertainties in either knowledge of the incident neutrino flux or reliability of the

theoretical input needed to subtract the background from genuine elastic events (both

of which gradually improved in subsequent experiments). The values derived in these

papers fall well outside the most probable range of values known today and exhibit
very large statistical and systematical errors. Following the data selection criteria of

the Particle Data Group [4], they were excluded from this compilation. In all cases,

the axial form factor data were parameterized in terms of a dipole, the resulting world

average is

MA = (1.026 ± 0.021) GeV (neutrino scattering) . (9)

The other determinations of the axial form factor are based on the analysis of charged

pion electroproduction off protons, see references [24][25]-[34], slightly above the pion

production threshold (note that the MAMI measurement is presently extended [35] to

lower momentum transfer and to check the cross section at the highest Q2 point reported

in [24]). Such type of analysis is more involved. It starts from the low–energy theorem of
Nambu, Lurié and Shrauner [36, 37] for the electric dipole amplitude E(−)

0+ at threshold,

A. Liesenfeld et al, MAMI’99

νN → ℓN

MA = 1.026 ± 0.021 GeV

Axial structure of the nucleon 11

3.2. Determination of the axial form factor II: Electroproduction formalism

Consider now pion electroproduction off nucleons,

γ⋆(k2) + N1(p1) → πa(q) + N2(p2) , (23)

where γ⋆ denotes the virtual photon with virtuality k2 < 0, Ni(pi) (i = 1, 2) the

initial/final nucleon and πa(q) the pion with Cartesian isospin a = (0, +,−) and four–

momentum qµ. We will also use the positive definite quantity Q2 = −k2. The pertinent
Mandelstam variables are s = (p1 + k)2, t = (p1 − p2)2 and u = (p1 − q)2, subject

to the constraint s + t + u = 2m2 + M2
π + k2, with Mπ the pion mass. In the Born

(one-photon-exchange) approximation, the corresponding coincidence cross section can

be factorized as [73]

dσ

dE ′
e dΩ′

e dΩ⋆
π

= Γv
dσv

dΩ⋆
π

, (24)

where Γv is the virtual photon flux, E ′
e, Ω′

e the energy and the solid angle of the scattered

electron, and dσv/dΩ⋆
π is the virtual photon cross section in the centre-of-mass frame

of the final πN system, as denoted by the star. It can be further decomposed into

transverse, longitudinal and two interference parts,

dσv

dΩ⋆
π

=
dσT

dΩ⋆
π

+ ϵ⋆
L

dσL

dΩ⋆
π

+
√

2 ϵ⋆
L(1 + ϵ)

dσLT

dΩ⋆
π

cos φπ + ϵ
dσTT

dΩ⋆
π

cos 2φπ (25)

with the transverse (ϵ) and longitudinal (ϵ⋆
L = −k2ϵ/k⋆2

0 ) polarizations of the virtual

photon fixed by the electron kinematics. In parallel kinematics (θ⋆
π = θπ = 0◦, with θπ

the polar angle in the scattering plane as seen in the laboratory system) the interference

parts vanish. Therefore, at constant four–momentum transfer, the transverse and the

longitudinal cross sections can be separated using the Rosenbluth method by varying ϵ,

dσv

dΩ⋆
π

=
dσT

dΩ⋆
π

− ϵ
k2

k⋆2
0

dσL

dΩ⋆
π

. (26)

(Note that often the photon energy is denoted by ω, however, here this symbol is entirely

reserved for the pion energy). At low energies, the connection to theory is most easily

made by means of the multipole expansion. For doing that, one considers the transition

current related to equation (23), which can be decomposed in terms of six invariant

amplitudes (we follow the conventions and notations of reference [74], see also [75])

ϵ · T (p2, s2; q, a|p1, s1; k) = i ū2 γ5

6∑

i=1

ϵ · Mi Ai(s, u) u1 , (27)

with si the spin index of nucleon i. The explicit forms of the operators Mi can be found
in [74] and the Ai are invariant functions that depend on two kinematical variables.

Here, we have chosen the Mandelstam variables s and u. The amplitudes Ai(s, u) have

the isospin decomposition

Ai(s, u) = A(+)
i (s, u) δa3 + A(−)

i (s, u) 1
2 [τa, τ3] + A(0)

i (s, u) τa . (28)

MA = 1.069 ± 0.016 GeV
Emilie Passemar !15



What is know on the Axial Form Factor?
❖ Recently very significant progress on two fronts:

• Experimentally many new measurements: MiniBooNE, K2K, MINERvA, NOMAD 
 
 
 
 
 
 
 
 
 
 

•                        
see talk by M. Constantinou
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FIG. 13: (Color online). Flux-integrated double differential
cross section per target neutron for the νµ CCQE process.
The dark bars indicate the measured values and the surround-
ing lighter bands show the shape error. The overall normal-
ization (scale) error is 10.7%. Numerical values are provided
in Table VI in the Appendix.

simplicity, the full error matrices are not reported for all
distributions. Instead, the errors are separated into a to-
tal normalization error, which is an error on the overall
scale of the cross section, and a “shape error” which con-
tains the uncertainty that does not factor out into a scale
error. This allows for a distribution of data to be used
(e.g. in a model fit) with an overall scale error for un-
certainties that are completely correlated between bins,
together with the remaining bin-dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential cross
section

The flux-integrated, double differential cross section
per neutron, d2σ

dTµd cos θµ
, for the νµ CCQE process is ex-

tracted as described in Section IVD and is shown in
Figure 13 for the kinematic range, −1 < cos θµ < +1,
0.2 < Tµ(GeV) < 2.0. The errors, for Tµ outside of this
range, are too large to allow a measurement. Also, bins
with low event population near or outside of the kine-
matic edge of the distribution (corresponding to large
Eν) do not allow for a measurement and are shown as
zero in the plot. The numerical values for this double
differential cross section are provided in Table VI in the
Appendix.
The flux-integrated CCQE total cross section, ob-

tained by integrating the double differential cross section
(over −1 < cos θµ < +1, 0 < Tµ(GeV) < ∞), is mea-
sured to be 9.429× 10−39 cm2. The total normalization
error on this measurement is 10.7%.
The kinematic quantities, Tµ and cos θµ, have been cor-
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FIG. 14: (Color online). Flux-integrated single differential
cross section per target neutron for the νµ CCQE process.
The measured values are shown as points with the shape
error as shaded bars. Calculations from the nuance RFG
model with different assumptions for the model parameters
are shown as histograms. Numerical values are provided in
Table IX in the Appendix.

rected for detector resolution effects only (Section IVD).
Thus, this result is the most model-independent mea-
surement of this process possible with the MiniBooNE
detector. No requirements on the nucleonic final state
are used to define this process. The neutrino flux is an
absolute prediction [19] and has not been adjusted based
on measured processes in the MiniBooNE detector.

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, dσ

dQ2

QE
, has also been measured and is shown

in Figure. 14. The quantity Q2
QE is defined in Eq. 2

and depends only on the (unfolded) quantities Tµ and
cos θµ. It should be noted that the efficiency for events
with Tµ < 200 MeV is not zero because of difference
between reconstructed and unfolded Tµ. The calculation
of efficiency for these (low-Q2

QE) events depends only on
the model of the detector response, not on an interaction
model and the associated uncertainty is propagated to
the reported results.
In addition to the experimental result, Figure 14 also

shows the prediction for the CCQE process from the nu-
ance simulation with three different sets of parameters
in the underlying RFG model. The predictions are ab-
solutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assum-
ing both the world-averaged CCQE parameters (MA =
1.03 GeV, κ = 1.000) [9] and the CCQE parameters ex-
tracted from this analysis (MA = 1.35 GeV, κ = 1.007)
in a shape-only fit. The model using the world-averaged

gA ≡ FA(0)

Reference mA [GeV] Èr2
AÍ [fm2]

K2K [10] 1.20 ± 0.12 0.32 ± 0.06
NOMAD [11] 1.05 ± 0.06 0.42 ± 0.05
MiniBoonNE [12] 1.35 ± 0.17 0.26 ± 0.06
MINERvA [13] 0.99 0.48
MINOS [14] 1.23+0.13

≠0.09 0.31+0.07
≠0.05

Table 1: Axial mass and squared axial radius determinations from neutrino scattering
experiments.

The parametrization given in Eq. (3) is tempting since it has only one free parameter,
mA, whose value can be determined from fits to experimental data. In the literature, mA is
being sometimes referred as the axial mass. However, this model is a too rough approach
to the form factor, it neglects contributions of heavier resonance states and it cannot be
employed above threshold where the form factor develops the imaginary part. Furthermore,
it does not satisfies the expected 1/Q4 fall-o� at high-energies that perturbative QCD
dictates [6]. These facts downgrade the axial mass mA to an e�ective mass parameter,
me�

A , that encompasses all the aforementioned dynamics, but it should not be understood
as the a1 pole mass in any case.

A commonly used representation that respects the 1/Q4 behavior is the dipole ansatz
introduced by Lewellyn-Smith [3] to explain neutrino quasielastic scattering data

ÂfA(Q2) = 1
(1 + Q2/m2

A)2 . (4)

Di�erent experiments have reported values for the e�ective mass me�
A . The weighted aver-

age values extracted from neutrino scattering experiments and from pion electroproduction
are mA = (1.026±0.021) GeV and mA = (1.069±0.016) GeV [9], respectively. Other more
recent results from neutrino scattering have been obtained by the K2K, the NOMAD, the
MiniBooNE, the Minerva and the MINOS Collaborations, and the corresponding results
are collected in the second column of Table 1.

As seen, the values reported for the axial mass parameter show some dispersion. A
possible cause that explains the disagreement between di�erent experiments in the cen-
tral values of mA might be due to the fact of using the dipole ansatz (cf. Eq. (4)). This
parametrization, although respecting the high energy scaling expected from perturbative
QCD, is a too rough approach to describe the functional Q2 dependence at accessible neu-
trino energies that are well below the perturbative region, Q2 Æ 1 GeV2. In this respect,
the slope of the form factor at Q2 = 0 is better suited to define the axial mass parameter
in a model-independent way and to address the tensions between the di�erent reported
measurements since it is essentially the only relevant parameter at low Q2.

The slope can be identified with the squared axial radius Èr2
AÍ after expanding the

normalized axial form factor around Q2 = 0

ÂfA(Q2) = 1 ≠ 1
6Èr2

AÍQ2 + · · · , (5)

3

FA(q2) = F(0)(1 +
1
6

⟨r2
A⟩q2 + 𝒪(q4))

⟨r2
A⟩ =

12
M2

A



What is know on the Axial Form Factor?
❖ Recently very significant progress on two fronts:

• Experimentally many new measurements:  MicroBooNE also !  
 
 
 
 
 
 
 
 
 
 

!17

15

(GeV)
µT

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2µ
θ

cos

-1-0.8-0.6-0.4-0.2-00.20.40.60.81
0

5

10

15

20

25

-3910×

/GeV)2(cm
µθdcosµdT

σ2d
=10.7%)TNδMiniBooNE data (

MiniBooNE data with shape error

FIG. 13: (Color online). Flux-integrated double differential
cross section per target neutron for the νµ CCQE process.
The dark bars indicate the measured values and the surround-
ing lighter bands show the shape error. The overall normal-
ization (scale) error is 10.7%. Numerical values are provided
in Table VI in the Appendix.

simplicity, the full error matrices are not reported for all
distributions. Instead, the errors are separated into a to-
tal normalization error, which is an error on the overall
scale of the cross section, and a “shape error” which con-
tains the uncertainty that does not factor out into a scale
error. This allows for a distribution of data to be used
(e.g. in a model fit) with an overall scale error for un-
certainties that are completely correlated between bins,
together with the remaining bin-dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential cross
section

The flux-integrated, double differential cross section
per neutron, d2σ

dTµd cos θµ
, for the νµ CCQE process is ex-

tracted as described in Section IVD and is shown in
Figure 13 for the kinematic range, −1 < cos θµ < +1,
0.2 < Tµ(GeV) < 2.0. The errors, for Tµ outside of this
range, are too large to allow a measurement. Also, bins
with low event population near or outside of the kine-
matic edge of the distribution (corresponding to large
Eν) do not allow for a measurement and are shown as
zero in the plot. The numerical values for this double
differential cross section are provided in Table VI in the
Appendix.
The flux-integrated CCQE total cross section, ob-

tained by integrating the double differential cross section
(over −1 < cos θµ < +1, 0 < Tµ(GeV) < ∞), is mea-
sured to be 9.429× 10−39 cm2. The total normalization
error on this measurement is 10.7%.
The kinematic quantities, Tµ and cos θµ, have been cor-
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FIG. 14: (Color online). Flux-integrated single differential
cross section per target neutron for the νµ CCQE process.
The measured values are shown as points with the shape
error as shaded bars. Calculations from the nuance RFG
model with different assumptions for the model parameters
are shown as histograms. Numerical values are provided in
Table IX in the Appendix.

rected for detector resolution effects only (Section IVD).
Thus, this result is the most model-independent mea-
surement of this process possible with the MiniBooNE
detector. No requirements on the nucleonic final state
are used to define this process. The neutrino flux is an
absolute prediction [19] and has not been adjusted based
on measured processes in the MiniBooNE detector.

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, dσ

dQ2

QE
, has also been measured and is shown

in Figure. 14. The quantity Q2
QE is defined in Eq. 2

and depends only on the (unfolded) quantities Tµ and
cos θµ. It should be noted that the efficiency for events
with Tµ < 200 MeV is not zero because of difference
between reconstructed and unfolded Tµ. The calculation
of efficiency for these (low-Q2

QE) events depends only on
the model of the detector response, not on an interaction
model and the associated uncertainty is propagated to
the reported results.
In addition to the experimental result, Figure 14 also

shows the prediction for the CCQE process from the nu-
ance simulation with three different sets of parameters
in the underlying RFG model. The predictions are ab-
solutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assum-
ing both the world-averaged CCQE parameters (MA =
1.03 GeV, κ = 1.000) [9] and the CCQE parameters ex-
tracted from this analysis (MA = 1.35 GeV, κ = 1.007)
in a shape-only fit. The model using the world-averaged

Reference mA [GeV] Èr2
AÍ [fm2]

K2K [10] 1.20 ± 0.12 0.32 ± 0.06
NOMAD [11] 1.05 ± 0.06 0.42 ± 0.05
MiniBoonNE [12] 1.35 ± 0.17 0.26 ± 0.06
MINERvA [13] 0.99 0.48
MINOS [14] 1.23+0.13

≠0.09 0.31+0.07
≠0.05

Table 1: Axial mass and squared axial radius determinations from neutrino scattering
experiments.

The parametrization given in Eq. (3) is tempting since it has only one free parameter,
mA, whose value can be determined from fits to experimental data. In the literature, mA is
being sometimes referred as the axial mass. However, this model is a too rough approach
to the form factor, it neglects contributions of heavier resonance states and it cannot be
employed above threshold where the form factor develops the imaginary part. Furthermore,
it does not satisfies the expected 1/Q4 fall-o� at high-energies that perturbative QCD
dictates [6]. These facts downgrade the axial mass mA to an e�ective mass parameter,
me�

A , that encompasses all the aforementioned dynamics, but it should not be understood
as the a1 pole mass in any case.

A commonly used representation that respects the 1/Q4 behavior is the dipole ansatz
introduced by Lewellyn-Smith [3] to explain neutrino quasielastic scattering data

ÂfA(Q2) = 1
(1 + Q2/m2

A)2 . (4)

Di�erent experiments have reported values for the e�ective mass me�
A . The weighted aver-

age values extracted from neutrino scattering experiments and from pion electroproduction
are mA = (1.026±0.021) GeV and mA = (1.069±0.016) GeV [9], respectively. Other more
recent results from neutrino scattering have been obtained by the K2K, the NOMAD, the
MiniBooNE, the Minerva and the MINOS Collaborations, and the corresponding results
are collected in the second column of Table 1.

As seen, the values reported for the axial mass parameter show some dispersion. A
possible cause that explains the disagreement between di�erent experiments in the cen-
tral values of mA might be due to the fact of using the dipole ansatz (cf. Eq. (4)). This
parametrization, although respecting the high energy scaling expected from perturbative
QCD, is a too rough approach to describe the functional Q2 dependence at accessible neu-
trino energies that are well below the perturbative region, Q2 Æ 1 GeV2. In this respect,
the slope of the form factor at Q2 = 0 is better suited to define the axial mass parameter
in a model-independent way and to address the tensions between the di�erent reported
measurements since it is essentially the only relevant parameter at low Q2.

The slope can be identified with the squared axial radius Èr2
AÍ after expanding the

normalized axial form factor around Q2 = 0

ÂfA(Q2) = 1 ≠ 1
6Èr2

AÍQ2 + · · · , (5)

3

FA(q2) = F(0)(1 +
1
6

⟨r2
A⟩q2 + 𝒪(q4))

⟨r2
A⟩ =

12
M2
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Marco Del Tutto 
14th July 2019!75

Conclusions
‣ First νμ CC inclusive cross section on 

argon at Eν ~ 0.8 GeV 

‣ Full angular coverage  

‣ MCS for momentum reconstruction, 

which allows the selection of exiting 
tracks and so there is no high 

momentum cut-off 

‣ The analysis has helped understanding 
the detector, and implement 

improvements to the detector 

simulation and event reconstruction. 

‣ Paper preprint:  

    https://arxiv.org/abs/1905.09694

This is the first differential cross 
section on argon!

Thank you!σ = 0.693 ± 0.010 (stat.) ± 0.165 (syst.) × 10−38 cm2

Inclusive 
Talk by M. Del Tutto



What is know on the Axial Form Factor?
❖ Recently very significant progress on two fronts:

• Lattice QCD results on                          and  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What is know on the Axial Form Factor?
❖ Recently very significant progress on two fronts:

• Lattice QCD results on                          and  
 
 
 
 
 
 
 
 
 
 
 
 
 

FA(Q2)gA ≡ FA(0)

Gupta et al., PNDME collab.’17
 Alexandrou et al., ETMC’17

NF = 2 + 1 + 1  see talk by M. Constantinou
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What is know on the Axial Form Factor?
❖ Recently very significant progress on two fronts:
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Bridging Lattice QCD and neutrino measurements

❖ Connecting predicted             to measured total and differential 
cross sections  

❖ Creating a physically motivated analytical parametrisation that 
can be used to assist and complement the lattice simulations 
(beyond the dipole)  
 
 
 

!21

FA(q2)

Emilie Passemar



Connecting predicted FA(q2) to cross sections

❖ In the past a combination of diverse data sets within the dipole 
parametrisation gave:  
 

!22

MA = 1.026 ± 0.021 GeV

Emilie Passemar



Connecting predicted FA(q2) to cross sections

❖ In the past a combination of diverse data sets within the dipole 
parametrisation gave:

❖ MiniBOONE data (and others Minerva, T2K…) can’t be fitted with this 
result within the RFG model             see later  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Connecting predicted FA(q2) to cross sections

❖ In the past a combination of diverse data sets within the dipole 
parametrisation gave:

❖ MiniBOONE data (and others Minerva, T2K…) can’t be fitted with this 
result within the RFG model             see later

❖  3 relevant physical mechanisms

• Excess in cross section due to multi-nucleon effects required to be very 
large (contrary to vector part)  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Connecting predicted FA(q2) to cross sections

❖ In the past a combination of diverse data sets within the dipole 
parametrisation gave:

❖ MiniBOONE data (and others Minerva, T2K…) can’t be fitted with this 
result within the RFG model             see later

❖ 3 relevant physical mechanisms

• Excess in cross section due to multi-nucleon effects required to be very 
large (contrary to vector part)

• Axial form factor was different: MA value of 1.35 GeV excellent fit not 
only to total cross section but also differential cross section  
In general different functional forms should be considered (e.g. z-param.)  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Connecting predicted FA(q2) to cross sections
❖ In the past a combination of diverse data sets within the dipole 

parametrisation gave:

❖ MiniBOONE data (and others Minerva, T2K…) can’t be fitted with this 
result within the RFG model             see later

❖ 3 relevant physical mechanisms

• Excess in cross section due to multi-nucleon effects required to be very 
large (contrary to vector part)

• Axial form factor was different: MA value of 1.35 GeV excellent fit not 
only to total cross section but also differential cross section  
In general different functional forms should be considered (e.g. z-param.)

• Absorption in the medium, FSI 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Connecting predicted FA(q2) to cross sections
❖ In the past a combination of diverse data sets within the dipole 

parametrisation gave:

❖ MiniBOONE data (and others Minerva, T2K…) can’t be fitted with this 
result within the RFG model             see later

❖ 3 relevant physical mechanisms

• Excess in cross section due to multi-nucleon effects required to be very 
large (contrary to vector part)

• Axial form factor was different: MA value of 1.35 GeV excellent fit not 
only to total cross section but also differential cross section  
In general different functional forms should be considered (e.g. z-param.)

• Absorption in the medium, FSI

❖ In general combinations of these effects and one needs to disentangle these 
contributions
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Connecting predicted FA(q2) to cross sections
❖ In the past a combination of diverse data sets within the dipole 

parametrisation gave:

❖ MiniBOONE data (and others Minerva, T2K…) can’t be fitted with this 
result within the RFG model             see later

❖ 3 relevant physical mechanisms

• Excess in cross section due to multi-nucleon effects required to be very 
large (contrary to vector part)

• Axial form factor

• Absorption in the medium, FSI

❖ In general combinations of these effects and one needs to disentangle these 
contributions

❖ Recent lattice calculations seem to favour large values of MA ~ 1.35 GeV  
3 groups using different methods and systematics !28

MA = 1.026 ± 0.021 GeV



Which values of Q2 impact neutrino data?

!29
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FIG. 13: (Color online). Flux-integrated double differential
cross section per target neutron for the νµ CCQE process.
The dark bars indicate the measured values and the surround-
ing lighter bands show the shape error. The overall normal-
ization (scale) error is 10.7%. Numerical values are provided
in Table VI in the Appendix.

simplicity, the full error matrices are not reported for all
distributions. Instead, the errors are separated into a to-
tal normalization error, which is an error on the overall
scale of the cross section, and a “shape error” which con-
tains the uncertainty that does not factor out into a scale
error. This allows for a distribution of data to be used
(e.g. in a model fit) with an overall scale error for un-
certainties that are completely correlated between bins,
together with the remaining bin-dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential cross
section

The flux-integrated, double differential cross section
per neutron, d2σ

dTµd cos θµ
, for the νµ CCQE process is ex-

tracted as described in Section IVD and is shown in
Figure 13 for the kinematic range, −1 < cos θµ < +1,
0.2 < Tµ(GeV) < 2.0. The errors, for Tµ outside of this
range, are too large to allow a measurement. Also, bins
with low event population near or outside of the kine-
matic edge of the distribution (corresponding to large
Eν) do not allow for a measurement and are shown as
zero in the plot. The numerical values for this double
differential cross section are provided in Table VI in the
Appendix.
The flux-integrated CCQE total cross section, ob-

tained by integrating the double differential cross section
(over −1 < cos θµ < +1, 0 < Tµ(GeV) < ∞), is mea-
sured to be 9.429× 10−39 cm2. The total normalization
error on this measurement is 10.7%.
The kinematic quantities, Tµ and cos θµ, have been cor-
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FIG. 14: (Color online). Flux-integrated single differential
cross section per target neutron for the νµ CCQE process.
The measured values are shown as points with the shape
error as shaded bars. Calculations from the nuance RFG
model with different assumptions for the model parameters
are shown as histograms. Numerical values are provided in
Table IX in the Appendix.

rected for detector resolution effects only (Section IVD).
Thus, this result is the most model-independent mea-
surement of this process possible with the MiniBooNE
detector. No requirements on the nucleonic final state
are used to define this process. The neutrino flux is an
absolute prediction [19] and has not been adjusted based
on measured processes in the MiniBooNE detector.

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, dσ

dQ2

QE
, has also been measured and is shown

in Figure. 14. The quantity Q2
QE is defined in Eq. 2

and depends only on the (unfolded) quantities Tµ and
cos θµ. It should be noted that the efficiency for events
with Tµ < 200 MeV is not zero because of difference
between reconstructed and unfolded Tµ. The calculation
of efficiency for these (low-Q2

QE) events depends only on
the model of the detector response, not on an interaction
model and the associated uncertainty is propagated to
the reported results.
In addition to the experimental result, Figure 14 also

shows the prediction for the CCQE process from the nu-
ance simulation with three different sets of parameters
in the underlying RFG model. The predictions are ab-
solutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assum-
ing both the world-averaged CCQE parameters (MA =
1.03 GeV, κ = 1.000) [9] and the CCQE parameters ex-
tracted from this analysis (MA = 1.35 GeV, κ = 1.007)
in a shape-only fit. The model using the world-averaged
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Which values of Q2 impact neutrino data?

❖ At the very minimum, since nucleons in         one must include their 
Fermi motion : simplest model             
            Relativistic Fermi Gas model  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FIG. 13: (Color online). Flux-integrated double differential
cross section per target neutron for the νµ CCQE process.
The dark bars indicate the measured values and the surround-
ing lighter bands show the shape error. The overall normal-
ization (scale) error is 10.7%. Numerical values are provided
in Table VI in the Appendix.

simplicity, the full error matrices are not reported for all
distributions. Instead, the errors are separated into a to-
tal normalization error, which is an error on the overall
scale of the cross section, and a “shape error” which con-
tains the uncertainty that does not factor out into a scale
error. This allows for a distribution of data to be used
(e.g. in a model fit) with an overall scale error for un-
certainties that are completely correlated between bins,
together with the remaining bin-dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential cross
section

The flux-integrated, double differential cross section
per neutron, d2σ

dTµd cos θµ
, for the νµ CCQE process is ex-

tracted as described in Section IVD and is shown in
Figure 13 for the kinematic range, −1 < cos θµ < +1,
0.2 < Tµ(GeV) < 2.0. The errors, for Tµ outside of this
range, are too large to allow a measurement. Also, bins
with low event population near or outside of the kine-
matic edge of the distribution (corresponding to large
Eν) do not allow for a measurement and are shown as
zero in the plot. The numerical values for this double
differential cross section are provided in Table VI in the
Appendix.
The flux-integrated CCQE total cross section, ob-

tained by integrating the double differential cross section
(over −1 < cos θµ < +1, 0 < Tµ(GeV) < ∞), is mea-
sured to be 9.429× 10−39 cm2. The total normalization
error on this measurement is 10.7%.
The kinematic quantities, Tµ and cos θµ, have been cor-
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FIG. 14: (Color online). Flux-integrated single differential
cross section per target neutron for the νµ CCQE process.
The measured values are shown as points with the shape
error as shaded bars. Calculations from the nuance RFG
model with different assumptions for the model parameters
are shown as histograms. Numerical values are provided in
Table IX in the Appendix.

rected for detector resolution effects only (Section IVD).
Thus, this result is the most model-independent mea-
surement of this process possible with the MiniBooNE
detector. No requirements on the nucleonic final state
are used to define this process. The neutrino flux is an
absolute prediction [19] and has not been adjusted based
on measured processes in the MiniBooNE detector.

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, dσ

dQ2

QE
, has also been measured and is shown

in Figure. 14. The quantity Q2
QE is defined in Eq. 2

and depends only on the (unfolded) quantities Tµ and
cos θµ. It should be noted that the efficiency for events
with Tµ < 200 MeV is not zero because of difference
between reconstructed and unfolded Tµ. The calculation
of efficiency for these (low-Q2

QE) events depends only on
the model of the detector response, not on an interaction
model and the associated uncertainty is propagated to
the reported results.
In addition to the experimental result, Figure 14 also

shows the prediction for the CCQE process from the nu-
ance simulation with three different sets of parameters
in the underlying RFG model. The predictions are ab-
solutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assum-
ing both the world-averaged CCQE parameters (MA =
1.03 GeV, κ = 1.000) [9] and the CCQE parameters ex-
tracted from this analysis (MA = 1.35 GeV, κ = 1.007)
in a shape-only fit. The model using the world-averaged
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❖ Using Relativistic Fermi Gas model  
 
 
 
 
 

Quasi-elastic Neutrino Cross Section

A.2 Model for the nuclear matrix element

We employ a standard treatment of nuclear effects, the “Relativistic Fermi Gas” (RFG) model
as presented by Smith and Moniz in [16], based on the model presented in [51].

We assume that there are A nucleons inside the nucleus, with A/2 neutrons and A/2
protons. The incoming neutrino interacts with a neutron with 3-momentum p, determined by
some distribution ni(p). The final state proton phase space is limited by a factor of [1−nf (p′)]
enforcing Fermi statistics. Symbolically,

σnuclear = ni(p)⊗ σfree(p → p
′)⊗ [1− nf(p

′)], (36)

and more explicitly

σnuclear ≈ 2V

∫

d3p

(2π)3
ni(p)

{

G2
F

16|k · p|

∫

d3k′

(2π)32Ek′

∫

d3p′

(2π)32Ep′

(2π)4δ4(p− p′ + q)LµνHµν

}

[1− nf (p
′)] . (37)

To arrive at the final model, two modifications are made. First, we make the replacement
k · p → EkEp in the prefactor of (37). This replacement ignores a correction from the nonzero
velocity of the initial state nucleon. It corresponds to the model of [16], adopted by [3]; for
definiteness we have followed this convention. Second, we incorporate a “binding energy”, ϵb,
by expressing Hµν as a function of Lorentz 4-vectors pµ, qµ as in (34) and then making in (37)
the replacements

p0 → ϵp ≡ Ep − ϵb , p′0 → ϵ′p′ ≡ Ep′ , (38)

with Ep ≡
√

m2
N + |p|2. Again, there is some arbitrariness to the insertion of ϵb into the

formalism; for definiteness we have followed the conventions of [16]. The cross section is then

σnuclear =
G2

F

16|k · pT |

∫

d3k′

(2π)32Ek′

LµνWµν , (39)

where pµT is the 4-momentum of the target nucleus with mass mT ≡ AmN(1− ϵb). We work in
the target rest frame where pµT = mT δ

µ
0 . The model nuclear structure function Wµν is defined

as

Wµν ≡
∫

d3p f(p, q0, q)Hµν(ϵp,p; q0, q) , (40)

with

f(p, q0, q) =
mTV

4π2
ni(p)[1− nf (p+ q)]

δ(ϵp − ϵ′p+q + q0)

ϵpϵ′p+q

. (41)

The distribution of neutrons and protons is

ni(p) = θ(pF − |p|) , nf(p
′) = θ(pF − |p′|) , (42)

13

General formula for cross section 
contains a product of the leptonic 
and hadronic tensors 

Pauli blocking p > pF Energy transfer > EB 
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Smith&Moniz’72

A.2 Model for the nuclear matrix element

We employ a standard treatment of nuclear effects, the “Relativistic Fermi Gas” (RFG) model
as presented by Smith and Moniz in [16], based on the model presented in [51].

We assume that there are A nucleons inside the nucleus, with A/2 neutrons and A/2
protons. The incoming neutrino interacts with a neutron with 3-momentum p, determined by
some distribution ni(p). The final state proton phase space is limited by a factor of [1−nf (p′)]
enforcing Fermi statistics. Symbolically,

σnuclear = ni(p)⊗ σfree(p → p
′)⊗ [1− nf(p

′)], (36)

and more explicitly

σnuclear ≈ 2V

∫
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(2π)3
ni(p)
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(2π)32Ek′

∫

d3p′

(2π)32Ep′

(2π)4δ4(p− p′ + q)LµνHµν

}

[1− nf (p
′)] . (37)

To arrive at the final model, two modifications are made. First, we make the replacement
k · p → EkEp in the prefactor of (37). This replacement ignores a correction from the nonzero
velocity of the initial state nucleon. It corresponds to the model of [16], adopted by [3]; for
definiteness we have followed this convention. Second, we incorporate a “binding energy”, ϵb,
by expressing Hµν as a function of Lorentz 4-vectors pµ, qµ as in (34) and then making in (37)
the replacements

p0 → ϵp ≡ Ep − ϵb , p′0 → ϵ′p′ ≡ Ep′ , (38)

with Ep ≡
√

m2
N + |p|2. Again, there is some arbitrariness to the insertion of ϵb into the

formalism; for definiteness we have followed the conventions of [16]. The cross section is then

σnuclear =
G2

F

16|k · pT |

∫

d3k′

(2π)32Ek′

LµνWµν , (39)

where pµT is the 4-momentum of the target nucleus with mass mT ≡ AmN(1− ϵb). We work in
the target rest frame where pµT = mT δ

µ
0 . The model nuclear structure function Wµν is defined

as

Wµν ≡
∫

d3p f(p, q0, q)Hµν(ϵp,p; q0, q) , (40)

with

f(p, q0, q) =
mTV

4π2
ni(p)[1− nf (p+ q)]

δ(ϵp − ϵ′p+q + q0)

ϵpϵ′p+q

. (41)

The distribution of neutrons and protons is

ni(p) = θ(pF − |p|) , nf(p
′) = θ(pF − |p′|) , (42)
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Quasi-elastic Scattering
Within a single nucleus, there are still unknowns. . .

Cross section is parameterized by a series of form factors
(see Formaggio, Zeller [arXiv:1305.7513]):
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Including effects of  
the binding energy

A.2 Model for the nuclear matrix element

We employ a standard treatment of nuclear effects, the “Relativistic Fermi Gas” (RFG) model
as presented by Smith and Moniz in [16], based on the model presented in [51].

We assume that there are A nucleons inside the nucleus, with A/2 neutrons and A/2
protons. The incoming neutrino interacts with a neutron with 3-momentum p, determined by
some distribution ni(p). The final state proton phase space is limited by a factor of [1−nf (p′)]
enforcing Fermi statistics. Symbolically,

σnuclear = ni(p)⊗ σfree(p → p
′)⊗ [1− nf(p

′)], (36)

and more explicitly

σnuclear ≈ 2V

∫

d3p

(2π)3
ni(p)

{

G2
F

16|k · p|

∫

d3k′

(2π)32Ek′

∫

d3p′

(2π)32Ep′

(2π)4δ4(p− p′ + q)LµνHµν

}

[1− nf (p
′)] . (37)

To arrive at the final model, two modifications are made. First, we make the replacement
k · p → EkEp in the prefactor of (37). This replacement ignores a correction from the nonzero
velocity of the initial state nucleon. It corresponds to the model of [16], adopted by [3]; for
definiteness we have followed this convention. Second, we incorporate a “binding energy”, ϵb,
by expressing Hµν as a function of Lorentz 4-vectors pµ, qµ as in (34) and then making in (37)
the replacements

p0 → ϵp ≡ Ep − ϵb , p′0 → ϵ′p′ ≡ Ep′ , (38)

with Ep ≡
√

m2
N + |p|2. Again, there is some arbitrariness to the insertion of ϵb into the

formalism; for definiteness we have followed the conventions of [16]. The cross section is then

σnuclear =
G2

F

16|k · pT |

∫

d3k′

(2π)32Ek′

LµνWµν , (39)

where pµT is the 4-momentum of the target nucleus with mass mT ≡ AmN(1− ϵb). We work in
the target rest frame where pµT = mT δ

µ
0 . The model nuclear structure function Wµν is defined

as

Wµν ≡
∫

d3p f(p, q0, q)Hµν(ϵp,p; q0, q) , (40)

with

f(p, q0, q) =
mTV

4π2
ni(p)[1− nf (p+ q)]

δ(ϵp − ϵ′p+q + q0)

ϵpϵ′p+q

. (41)

The distribution of neutrons and protons is

ni(p) = θ(pF − |p|) , nf(p
′) = θ(pF − |p′|) , (42)
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❖ Which Q2 range is 
important for neutrino 
XS data?

❖ If one changes the 
functional form of FA, 
how does that impact 
the XS prediction? 

Which values of Q2 impact neutrino data?

!32

17

FIG. 14. Our results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) using the plateau method for ts = 1.31 fm (filled blue squares).
In the left panel, the solid blue (orange) line shows the fit to our lattice QCD results extracted from the plateau at ts = 1.31 fm
(from the two-state fit) using Eq. (32). The experimental value of gA is shown with the black asterisk. The purple, red and
green bands are experimental results for Gu�d

A (Q2) taken from Refs. [59], [60] and [61] respectively. In the right panel, the
open blue squares show the prediction for Gu�d

p (Q2) assuming pion-pole dominance and using Eq. (34) to extract Gu�d
p (Q2)

from our lattice results for Gu�d
A (Q2) shown in the left panel, together with the corresponding fits, blue (orange) band is a fit

to the predicted Gu�d
p (Q2) using Gu�d

A (Q2) extracted from the plateau (two-state). The two fits are overlapping. The filled
blue squares show Gu�d

p (Q2) extracted directly from the nucleon matrix element with a fit to Eq. (39) (solid black line) after
omitting the two lowest Q2 values. The filled black circles are direct measurements of Gu�d

p (Q2) from Ref. [5]. The purple, red
and green bands use the experimental results for Gu�d

A (Q2) and pion pole to infer Gu�d
p (Q2).

FIG. 15. Gu�d
A (Q2) extracted from the plateau method at ts = 1.31 fm, fitted to the dipole form (grey band) and to the

z-expansion (blue band).

values are available, we plot, in Fig. 17, the sink-source separation t

s

= 1.31 fm and two-state fit methods alone for
better clarity. The disconnected contributions reduce the value of Gu+d

A

(Q2) and for zero momentum transfer result
in a value compatible with the experimental one. As already mentioned, the disconnected contributions to G

u+d

p

(Q2)
are particularly large and reduce its value especially at low values of Q2. Adding the connected and disconnected
contributions obtained using ~p

0 = ~0 for which common Q

2-values are available, yields the result shown in Fig. 18.
We note that, due to the fact that the disconnected part is computed with much higher statistics as compared to the

 Alexandrou et al., ETMC’17
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Which values of Q2 impact neutrino data?

❖  

!33

❖ Composition of MiniBooNE Cross Section

 

❖ At E ~ 0.5 GeV the XS comes from Q2 < 0.6 GeV2

Emilie Passemar
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Which values of Q2 impact neutrino data?

❖  

!34

❖ Composition of MiniBooNE Cross Section

 

❖ At E ~ 0.5 GeV the XS comes from Q2  < 0.6 GeV2

❖ At E ~ 1 GeV, ~40% contributions from 0.6 GeV2 < Q2 < 2 GeV2

Friedland, Gonzalez-Solis, E.P., Quirion, Ristow in preparation



Axial Form Factor Enhancement
❖ MiniBooNE cross section measurements seem to favour a 30% 

enhancement of the axial form factor 

❖ The same enhancement provides a good fit to MiniBooNE 
differential Cross Section measurements

!35Emilie Passemar
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Which values of Q2 impact neutrino data?

❖  

!36

❖ Composition of MINERvA Cross Section

❖ The situation is similar, although E𝝂 is higher the relevant values are 
Q2 < 2 GeV2  

Friedland, Gonzalez-Solis, E.P., Quirion, Ristow in preparation



Which values of q2 impact neutrino data?

❖ The experimental results point towards a larger value of the axial 
form factor 

❖ If true, the value of MA saturates the cross section leaving little 
room for multi nucleon effects or others  
 

!37

MA ∼ 1.35 GeV
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Which values of q2 impact neutrino data?

❖ The experimental results point towards a larger value of the axial 
form factor 

❖ If true, the value of MA saturates the cross section leaving little 
room for multi nucleon effects

❖ Is the dipole physically motivated?  
 
 
 
 
The parametrisation has an impact on different q2 dependence 
ranges on the neutrino data  

!38

MA ∼ 1.35 GeV

FA(q2) =
FA(0)

(1 − q2

M2
A )

2
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❖ With very precise data  
the dipole parametrisation  
fails for EM form factors  
 
 
 
 
 

❖

Dipole Parametrization

!39
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which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.

present experiment with a series of published form factors:
the standard dipole, the Padé and polynomial descriptions of
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FIG. 12. Probability distribution of M2 when the knot position of
the variable splines are varied as described in the text.

around 0 to |Q2| < 4m2
π . To test this, we modified the spline

model; we add to the spline model a calculation of the
nonanalytic terms [93]. In effect, the splines will then only
have to fit the remaining, analytical part. The result is almost
indistinguishable from the spline fit without this addition with
a relative change of below 6 × 10−4.

B. Form factors via Rosenbluth separation

The classical way of determining GE and GM is the
Rosenbluth separation of cross sections measured at fixed
Q2 for different polarization ε. Rewriting the cross section
[Eq. (7)] as

σred = ε (1 + τ )
(

dσ

d%

)

0

/ (
dσ

d%

)

Mott

=
[
εG2

E(Q2) + τG2
M (Q2)

]
(51)

makes it obvious that, for constant Q2, the reduced cross
section σred depends linearly on ε with G2

E(Q2) as slope and
τG2

M (Q2) as ordinate intercept. Hence, a linear fit can be
used to extract GE and GM . We have discussed in Sec. I the
advantages of extracting the form factors through a global fit
to the cross sections. Nevertheless, we also perform a classic
Rosenbluth separation of our data in order to reconcile our
analysis with the expectation the community might have.

One of the problems with a direct Rosenbluth separation
of measured cross sections is a coherent inclusion of a
normalization of the data. We handle this by first fixing the
cross section with the normalizations extracted by the spline
fit.

Another problem is the necessity of several data points
at constant Q2 but varied ε. Due to the large number of
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FIG. 13. Results for a global fit with the data of this work together
with external cross-section data. Black line: Best spline fit with
nominal knot values. Light gray: Statistical 68% pointwise confidence
band. Dark gray: model dependency from knot variation. Dashed
line: Padé model. Dotted lines: edges of statistical confidence band
for Padé model.

measurements with overlapping acceptances, it is possible
to find a set of 77 narrowly spaced Q2

i with measurements
at at least three different ε, so the linearity can be tested.
Obviously, not all of the measured data are being used in this
case—especially unfortunate is the loss of information on the
lower end of Q2: The lowest point is 4 times larger than what
is available in the data. To project the cross section, which
has been averaged over a finite-size Q2 range given by the
spectrometer acceptance, to the nearest Q2

i point, we divide by
the numerically integrated result of the Monte Carlo simulation
with the standard dipole for GE and GM and multiply by the
differential cross section evaluated with the same form factors
at the given Q2

i point.
This procedure implies an error which, to first order,

depends on the difference of the curvature of the true cross
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What do we know on the Axial Form Factor?

❖ Their low energy behaviour: given by ChPT

❖ They are defined as the Fourier transform of the charge 
distribution: they can be computed within ChPT at 

recall scattering from extended classical charge distribution: 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ
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bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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Where does the large uncertainty in FA from scattering come from?

recall scattering from extended classical charge distribution: 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,

M
+�!

��
�

�

(p
+p0)2

=

4M
2
±

=
Z
�
2

(Z
W
1

)
2

(Z
W
2

)
�
2

2e
2

+
e
2

g
2

2

(4⇡)
2

⇢

8⇡c
2

W
M

mZ

+
8⇡s

2

W
M

m�

+8
⇣

c
2

W
log

mZ

2M
+s

2

W
log

m�

2M

⌘

�16log
2

mW

2M

�16log
mW

2M

�8i⇡log
mW

2M

+
3⇡

2

2
�18

+
mW

M



�4⇡+
7⇡

3
cW

�

+
m
2

W

M
2



5log
2

mW

2M

�12log
mW

2M

�2log
mZ

2M

+5i⇡log
mW

2M

�12log2+
20

3
�
5⇡

2

4
�
7i⇡

4

�

+O(↵,m�,�/mW
,
p

�/M
,m

3

W
/M

3

)

�

.
(19)

TherenormalizationconstantZ
�
2

isinheritedfrom
theelectroweaksymmetricLagrangian(2)and

Z
W
1

,Z
W
2

arefieldandcouplingrenormalizationfactorsfortheSU(2)gaugefield[77].
6

Letusbrieflyreview
therenormalizationforthescalartriplet.The1PItwopointfunctionsfor

6Followingtheconventionsof[77],bareLagrangian
fieldsand

parametersaregiven
by(W

a
µ)
bare=

(Z
W
2
)
1/2W

a
µ,

g
bare

2

=
Z
W
1
(Z

W
2
)
�3/2g2.

11

e�

e�

⇢(r)

d�

d⌦
=

✓
d�

d⌦

◆

pointlike

|F (q2)|2

for the relativistic, QM, case, define 
radius as slope of form factor

F (q2) =

Z
d3r eiq·r⇢(r)

=

Z
d3r


1 + iq · r � 1

2
(q · r)2 + . . .

�
⇢(r)

= 1� 1

6
hr2iq2 + . . .

hJµi = �µF1 +
i

2mp
�µ⌫q⌫F2

GE = F1 +
q2

4m2
p

F2 GM = F1 + F2

r2E ⌘ 6
d

dq2
GE(q

2)

����
q2=0

22 (up to radiative corrections)

Where does the large uncertainty in FA from scattering come from?

We can perform a Taylor expansion: 

F(q2) = F(0)(1 +
1
6

⟨r2⟩q2 + 𝒪(q4))
!40

𝒪 (p4)
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❖ Chiral Perturbation Theory determination of 

What do we know on the Axial Form Factor?

FA(q2) ≡ GA(q2)

!41
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Fig. 2. GA(q2) in chiral perturbation theory at O(q4) (solid
line). The dashed line is a dipole fit. The data compilation is
taken from [5].
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Fig. 3. GP (q
2) in chiral perturbation theory at O(q4).

The contributions of the diagrams containing the axial
vector meson are

GAV M
A (q2) = −8fAGAN

q2

q2 −M2
a1

(32)

to the axial form factor and

GAVM
P (q2) = 32m2

NfAGAN
1

q2 −M2
a1

(33)

to the induced pseudoscalar form factor, respectively. One
sees that effectively only one new coupling constant, namely
fAGAN , appears. This coupling constant can be fitted to
the data [27].

5 Summary

A short overview over the experimental and theoretical sit-
uation of the nucleon form factors of the isovector axial-
vector current was given. The axial form factor GA(q2)
has been determined by two types of experiments, neu-
trino scattering and pion electroproduction. The results
from these two methods agree once pion loop corrections
to the electroproduction amplitude have been taken into
account. The situation for the induced pseudoscalar form
factor GP (q2) is less clear. The results obtained for the
induced pseudoscalar coupling gP from ordinary and ra-
diative muon capture do not agree. However, a recent mea-
surement of the ortho-para transition rate in pµpmolecules
results in a significant change of the previous results for
gP . A reformulation of the infrared renormalization in
baryon ChPT allows for the inclusion of axial-vector mesons
in the calculation of the form factors, which could result
in a better description of the experimental data. Only one
new low-energy constant effectively appears, which can be
fitted to the data.

This work was supported by the Deutsche Forschungsgemein-
schaft (SFB 443).
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What do we know on the Axial Form Factor?

❖ Its high energy behaviour:  
 
In the limit                           configuration with minimum # quarks  
will dominate     
 
 
 
 
 
 
When does pQCD set in? Experimentally for  

Brodsky & Farrar’75
Brodsky & Lepage’80

−q2 ≡ Q2 → ∞

2 hard gluons : FA(q2) ∼
1
q4

Q2 > 10 GeV2

!42

−q2 → ∞
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Improving the Form Factor parametrisation
❖ For intermediate energy region: Can try to use VMD

• Analytical structure of FF (e.g. F1 or FA)  
 
 
 
 
 

• Resonances (Vector Mesons)                For FA  (Axial Vector Mesons)

Photon or W sees proton through  
all hadronic states (with vector or 
axial-vector  Quantum Number)

Method: Dispersive representation 2
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t > t thr

=F
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• Dispersive representation
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tthr

dt′

π

ImFi(t
′)

t′ − t − i0

Expresses analytic structure of Fi(t)

• Spectral functions ImFi(t)

Current → hadronic states → NN̄

Processes in unphysical region t < 4M2
N

Spectral functions to be provided by theory
Frazer, Fulco 1960; Höhler et al 1975+
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Processes in unphysical  
region t < 4 mN

2 

!43

a1(1230) and a1’(1647)
Masjuan et al.’12

FA(t) = gA
m2

a1
m2

a′�1

(m2
a1

− t)(m2
a′�1 − t)
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Improving the Form Factor parametrisation
❖ For intermediate energy region: Can try to use VMD, e.g. EM FF

• Dispersion Relations

• Use spectral function from theory or from experiment 

!44
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Frazer &Fulco’60, Hohler et al’75



❖ First intermediate state 3𝜋  
 
 
 

❖ Use the spectral function from  
𝜏 → 3𝜋𝜈𝜏 measured by ALEPH  
to determine fA→ 3𝜋

Reconstruct the Axial form factor from Analyticity 

!45

Method: Dispersive representation 2
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❖ Build a function that has all good analytical properties and is in 
agreement with tau data for q2 > 0 and lattice data for q2 < 0 

❖ The dipole parametrisation blows up at q2 = M2A 

 

 

❖ The two pole parametrisation also blows up  
 
 

❖ One need to go out of the real axis:            Use Breit Wigners 

Axial form factor constrained from tau data and nucleon data 

!46

FA(q2) =
FA(0)

(1 − q2

M2 )
2

Masjuan et al.’12FA(t) = gA
m2

a1
m2

a′�1

(m2
a1

− t)(m2
a′�1 − t)
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❖ Build a function that has all good analytical properties and is in 
agreement with tau data for q2 > 0 and lattice data for q2 < 0 

❖ One needs to go out of the real axis:            Use Breit Wigners  
 
 
 
 
 

Axial form factor constrained from tau data and nucleon data 

!47

where “ is a parameter that measures the relative weight between the contributions of the
two resonances, and where the BW function reads

BWR(q2) = m2

R

m2

R ≠ q2 ≠ iMR�R(q2) , (7)

with
�R(q2) = �R

g(q2)
g(m2

R) . (8)

For our study, we take ma1 = 1230 MeV and �a1 = 425(175) MeV for the mass and
width of the a

1

(1260) axial resonance, and maÕ
1

= 1647 MeV and �aÕ
1

= 254 MeV for
the a

1

(1640) ones [2]. Regarding the function g(q2) entering the width of Eq. (8), it is
a polynomial expansion, starting at (q2 ≠ 9m2

fi)3 to reproduce the P-wave phase space,
whose coe�cients account for the a

1

æ 3fi contribution to the width and are fixed from
·≠ æ 3fi‹· data. For our analysis, we take the form given in [3]. For the a

1

(1640) width, it
is largely unknown and we assume the same energy-dependent behavior as for the a

1

(1260).
In Fig. 1, we provide a graphical account of the resulting form factor for five di�erent

values of “. Notice that as the value of “ decreases, a single peak with an average mass
emerges.

However, there are still several drawbacks associated with the Breit-Wigner descrip-
tion of the form factor. The constraints imposed by analyticity and unitarity are not fully
respected by this kind of weighted sum of Breit-Wigner functions. In order to fulfill analyt-
icity, the real part of the unitarity corrections, that accounts for the o�-shell propagation of
intermediate states, should be taken into account in the resonance propagator. Moreover,
these descriptions often generate artificial poles, and do not incorporate the low-energy
constraints from chiral symmetry. Therefore, the extrapolation of these form factors to
low-energies should be taken with great caution.

The use of dispersive parametrizations of the form factor cure most of the aforemen-
tioned pathologies, if not all.

1.2 Dispersive approach

Let us consider the Omnès equation [4]

f(q2) = exp
C

q

fi

⁄ scut

9m2
fi

dsÕ ”(sÕ)
sÕ(sÕ ≠ q2 ≠ i0)

D

. (9)

The phase ”(s) entering the dispersive integral encodes the physics of the a
1

and aÕ
1

resonances. We adopt the form factor representation given in Eq. (6) to get a model for
the form factor phase. This phase can be extracted from the relation

tan ”(q2) = Imf
BW

(q2)
Ref

BW

(q2) . (10)

3

with

fBW
A (q2) = BWa1(1260)(q2)

and

where “ is a parameter that measures the relative weight between the contributions of the
two resonances, and where the BW function reads

BWR(q2) = m2

R

m2

R ≠ q2 ≠ iMR�R(q2) , (7)

with
�R(q2) = �R

g(q2)
g(m2

R) . (8)

For our study, we take ma1 = 1230 MeV and �a1 = 425(175) MeV for the mass and
width of the a

1

(1260) axial resonance, and maÕ
1

= 1647 MeV and �aÕ
1

= 254 MeV for
the a

1

(1640) ones [2]. Regarding the function g(q2) entering the width of Eq. (8), it is
a polynomial expansion, starting at (q2 ≠ 9m2

fi)3 to reproduce the P-wave phase space,
whose coe�cients account for the a

1

æ 3fi contribution to the width and are fixed from
·≠ æ 3fi‹· data. For our analysis, we take the form given in [3]. For the a

1

(1640) width, it
is largely unknown and we assume the same energy-dependent behavior as for the a

1

(1260).
In Fig. 1, we provide a graphical account of the resulting form factor for five di�erent

values of “. Notice that as the value of “ decreases, a single peak with an average mass
emerges.

However, there are still several drawbacks associated with the Breit-Wigner descrip-
tion of the form factor. The constraints imposed by analyticity and unitarity are not fully
respected by this kind of weighted sum of Breit-Wigner functions. In order to fulfill analyt-
icity, the real part of the unitarity corrections, that accounts for the o�-shell propagation of
intermediate states, should be taken into account in the resonance propagator. Moreover,
these descriptions often generate artificial poles, and do not incorporate the low-energy
constraints from chiral symmetry. Therefore, the extrapolation of these form factors to
low-energies should be taken with great caution.

The use of dispersive parametrizations of the form factor cure most of the aforemen-
tioned pathologies, if not all.

1.2 Dispersive approach

Let us consider the Omnès equation [4]

f(q2) = exp
C

q

fi

⁄ scut

9m2
fi

dsÕ ”(sÕ)
sÕ(sÕ ≠ q2 ≠ i0)

D

. (9)

The phase ”(s) entering the dispersive integral encodes the physics of the a
1

and aÕ
1

resonances. We adopt the form factor representation given in Eq. (6) to get a model for
the form factor phase. This phase can be extracted from the relation

tan ”(q2) = Imf
BW

(q2)
Ref

BW

(q2) . (10)
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where “ is a parameter that measures the relative weight between the contributions of the
two resonances, and where the BW function reads

BWR(q2) = m2

R
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R ≠ q2 ≠ iMR�R(q2) , (7)

with
�R(q2) = �R

g(q2)
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R) . (8)

For our study, we take ma1 = 1230 MeV and �a1 = 425(175) MeV for the mass and
width of the a
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= 1647 MeV and �aÕ
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the a
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(1640) ones [2]. Regarding the function g(q2) entering the width of Eq. (8), it is
a polynomial expansion, starting at (q2 ≠ 9m2

fi)3 to reproduce the P-wave phase space,
whose coe�cients account for the a

1

æ 3fi contribution to the width and are fixed from
·≠ æ 3fi‹· data. For our analysis, we take the form given in [3]. For the a

1

(1640) width, it
is largely unknown and we assume the same energy-dependent behavior as for the a

1

(1260).
In Fig. 1, we provide a graphical account of the resulting form factor for five di�erent

values of “. Notice that as the value of “ decreases, a single peak with an average mass
emerges.

However, there are still several drawbacks associated with the Breit-Wigner descrip-
tion of the form factor. The constraints imposed by analyticity and unitarity are not fully
respected by this kind of weighted sum of Breit-Wigner functions. In order to fulfill analyt-
icity, the real part of the unitarity corrections, that accounts for the o�-shell propagation of
intermediate states, should be taken into account in the resonance propagator. Moreover,
these descriptions often generate artificial poles, and do not incorporate the low-energy
constraints from chiral symmetry. Therefore, the extrapolation of these form factors to
low-energies should be taken with great caution.

The use of dispersive parametrizations of the form factor cure most of the aforemen-
tioned pathologies, if not all.

1.2 Dispersive approach

Let us consider the Omnès equation [4]

f(q2) = exp
C

q

fi

⁄ scut

9m2
fi

dsÕ ”(sÕ)
sÕ(sÕ ≠ q2 ≠ i0)
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. (9)

The phase ”(s) entering the dispersive integral encodes the physics of the a
1

and aÕ
1

resonances. We adopt the form factor representation given in Eq. (6) to get a model for
the form factor phase. This phase can be extracted from the relation

tan ”(q2) = Imf
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with

fBW
A (q2) =

1
1 + γ [BWa1(1260)(q2) + γ BWa1(1640)(q2)]

and

where “ is a parameter that measures the relative weight between the contributions of the
two resonances, and where the BW function reads

BWR(q2) = m2

R
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R ≠ q2 ≠ iMR�R(q2) , (7)

with
�R(q2) = �R

g(q2)
g(m2

R) . (8)

For our study, we take ma1 = 1230 MeV and �a1 = 425(175) MeV for the mass and
width of the a

1

(1260) axial resonance, and maÕ
1

= 1647 MeV and �aÕ
1

= 254 MeV for
the a

1

(1640) ones [2]. Regarding the function g(q2) entering the width of Eq. (8), it is
a polynomial expansion, starting at (q2 ≠ 9m2

fi)3 to reproduce the P-wave phase space,
whose coe�cients account for the a

1

æ 3fi contribution to the width and are fixed from
·≠ æ 3fi‹· data. For our analysis, we take the form given in [3]. For the a

1

(1640) width, it
is largely unknown and we assume the same energy-dependent behavior as for the a

1

(1260).
In Fig. 1, we provide a graphical account of the resulting form factor for five di�erent

values of “. Notice that as the value of “ decreases, a single peak with an average mass
emerges.

However, there are still several drawbacks associated with the Breit-Wigner descrip-
tion of the form factor. The constraints imposed by analyticity and unitarity are not fully
respected by this kind of weighted sum of Breit-Wigner functions. In order to fulfill analyt-
icity, the real part of the unitarity corrections, that accounts for the o�-shell propagation of
intermediate states, should be taken into account in the resonance propagator. Moreover,
these descriptions often generate artificial poles, and do not incorporate the low-energy
constraints from chiral symmetry. Therefore, the extrapolation of these form factors to
low-energies should be taken with great caution.

The use of dispersive parametrizations of the form factor cure most of the aforemen-
tioned pathologies, if not all.

1.2 Dispersive approach

Let us consider the Omnès equation [4]

f(q2) = exp
C

q

fi

⁄ scut

9m2
fi

dsÕ ”(sÕ)
sÕ(sÕ ≠ q2 ≠ i0)

D

. (9)

The phase ”(s) entering the dispersive integral encodes the physics of the a
1

and aÕ
1

resonances. We adopt the form factor representation given in Eq. (6) to get a model for
the form factor phase. This phase can be extracted from the relation

tan ”(q2) = Imf
BW

(q2)
Ref

BW

(q2) . (10)
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where “ is a parameter that measures the relative weight between the contributions of the
two resonances, and where the BW function reads

BWR(q2) = m2

R

m2

R ≠ q2 ≠ iMR�R(q2) , (7)

with
�R(q2) = �R

g(q2)
g(m2

R) . (8)

For our study, we take ma1 = 1230 MeV and �a1 = 425(175) MeV for the mass and
width of the a

1

(1260) axial resonance, and maÕ
1

= 1647 MeV and �aÕ
1

= 254 MeV for
the a

1

(1640) ones [2]. Regarding the function g(q2) entering the width of Eq. (8), it is
a polynomial expansion, starting at (q2 ≠ 9m2

fi)3 to reproduce the P-wave phase space,
whose coe�cients account for the a

1

æ 3fi contribution to the width and are fixed from
·≠ æ 3fi‹· data. For our analysis, we take the form given in [3]. For the a

1

(1640) width, it
is largely unknown and we assume the same energy-dependent behavior as for the a

1

(1260).
In Fig. 1, we provide a graphical account of the resulting form factor for five di�erent

values of “. Notice that as the value of “ decreases, a single peak with an average mass
emerges.

However, there are still several drawbacks associated with the Breit-Wigner descrip-
tion of the form factor. The constraints imposed by analyticity and unitarity are not fully
respected by this kind of weighted sum of Breit-Wigner functions. In order to fulfill analyt-
icity, the real part of the unitarity corrections, that accounts for the o�-shell propagation of
intermediate states, should be taken into account in the resonance propagator. Moreover,
these descriptions often generate artificial poles, and do not incorporate the low-energy
constraints from chiral symmetry. Therefore, the extrapolation of these form factors to
low-energies should be taken with great caution.

The use of dispersive parametrizations of the form factor cure most of the aforemen-
tioned pathologies, if not all.

1.2 Dispersive approach

Let us consider the Omnès equation [4]

f(q2) = exp
C

q

fi

⁄ scut

9m2
fi

dsÕ ”(sÕ)
sÕ(sÕ ≠ q2 ≠ i0)

D

. (9)

The phase ”(s) entering the dispersive integral encodes the physics of the a
1

and aÕ
1

resonances. We adopt the form factor representation given in Eq. (6) to get a model for
the form factor phase. This phase can be extracted from the relation

tan ”(q2) = Imf
BW

(q2)
Ref

BW

(q2) . (10)

3

with

fBW
A (q2) =

1
1 + γ [BWa1(1260)(q2) + γ BWa1(1640)(q2)]

and

where “ is a parameter that measures the relative weight between the contributions of the
two resonances, and where the BW function reads

BWR(q2) = m2

R

m2

R ≠ q2 ≠ iMR�R(q2) , (7)

with
�R(q2) = �R

g(q2)
g(m2

R) . (8)

For our study, we take ma1 = 1230 MeV and �a1 = 425(175) MeV for the mass and
width of the a

1

(1260) axial resonance, and maÕ
1

= 1647 MeV and �aÕ
1

= 254 MeV for
the a

1

(1640) ones [2]. Regarding the function g(q2) entering the width of Eq. (8), it is
a polynomial expansion, starting at (q2 ≠ 9m2

fi)3 to reproduce the P-wave phase space,
whose coe�cients account for the a

1

æ 3fi contribution to the width and are fixed from
·≠ æ 3fi‹· data. For our analysis, we take the form given in [3]. For the a

1

(1640) width, it
is largely unknown and we assume the same energy-dependent behavior as for the a

1

(1260).
In Fig. 1, we provide a graphical account of the resulting form factor for five di�erent

values of “. Notice that as the value of “ decreases, a single peak with an average mass
emerges.

However, there are still several drawbacks associated with the Breit-Wigner descrip-
tion of the form factor. The constraints imposed by analyticity and unitarity are not fully
respected by this kind of weighted sum of Breit-Wigner functions. In order to fulfill analyt-
icity, the real part of the unitarity corrections, that accounts for the o�-shell propagation of
intermediate states, should be taken into account in the resonance propagator. Moreover,
these descriptions often generate artificial poles, and do not incorporate the low-energy
constraints from chiral symmetry. Therefore, the extrapolation of these form factors to
low-energies should be taken with great caution.

The use of dispersive parametrizations of the form factor cure most of the aforemen-
tioned pathologies, if not all.

1.2 Dispersive approach

Let us consider the Omnès equation [4]

f(q2) = exp
C

q

fi

⁄ scut

9m2
fi

dsÕ ”(sÕ)
sÕ(sÕ ≠ q2 ≠ i0)

D

. (9)

The phase ”(s) entering the dispersive integral encodes the physics of the a
1

and aÕ
1

resonances. We adopt the form factor representation given in Eq. (6) to get a model for
the form factor phase. This phase can be extracted from the relation

tan ”(q2) = Imf
BW

(q2)
Ref

BW

(q2) . (10)

3

f disp
A (q2) = exp [α1q2 +

q4

π ∫
∞

9m2
π

ds′�
δ(s′�)

s′�2(s′�− q2 − iϵ) ]
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Preliminary

❖ Notice that the peak is consistent with MA ~ 1.2 - 1.3 GeV, but 
not with MA=1.03 GeV
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FA(q2) = gA ⋅ fA→3π (q2)

• Take a constant gA

Does not work!

A��������� ������������ �� ��� �����-����

Axial form factor of the nucleon
FA(Q�) = fa�(Q�)Pa�NN(Q�) ,

I fa�(Q�): from ⌧ ! �⇡
I Pa�NN(Q�): a�-NN vertex function
I if Pa�NN(Q�) = �: direct extrapolation of fa�(Q�)
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Method: Dispersive representation 2

thr

t

spacelike timelike

t

N

_

...

hadronic
states

N
t > t thr

=F

Isovector: ππ (incl. ρ), 4π,KK̄, ...
Isoscalar: 3π (incl.ω), KK̄ (incl. φ), ...

• Dispersive representation

Fi(t) =

∞∫

tthr

dt′

π

ImFi(t
′)

t′ − t − i0

Expresses analytic structure of Fi(t)

• Spectral functions ImFi(t)

Current → hadronic states → NN̄

Processes in unphysical region t < 4M2
N

Spectral functions to be provided by theory
Frazer, Fulco 1960; Höhler et al 1975+
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more detailed analysis [1]. We realize that FV(q 2) 
does not depend only on the p-propagator but also on 
the pNN vertex function. As the p-meson decays main- 
ly into 27r, the dominant contributions to the vertex 
correction KoN N (q2) are those shown in fig. 1 a 2. We 
know from ref. [1] and our recent work [4] that 
KpNN ( q 2 )  is roughly given by a monopole with A 
~0 .8  GeV - at least up to q2 ~ 1 (GeV/c) 2. Therefore 
F V (q2) is roughly given by 

F V (q2) = ,[FV(o)/[1 + (q/mp) 2 ] } [1 + (q/0.8) 2 ] -1 

~ [(1 + q2/m2)2]-l, (2) 

i.e. by a dipole form with a cutt off  mass of  roughly 
the p-meson mass. 

Equivalently the axial formfactor GA(q2 ) via axial 
vector meson dominance (AMD) is (compare fig. lb) 

GA(q2)=~GA(O)/[I+(q/mA1)2])KA,(q2), (3) 

where mA1 = 1.2 GeV is the mass of  the AI(1 ÷) 
meson, (F ~ 3 0 0  MeV) and KAI(q2 ) is the A l - n u c l e o n  
vertex function. As the A 1 meson decays predominat- 
ly into 7r and p, the leading contributions are those 
shown in fig. 1 b. 

Although both formfactors, FV(q 2) as well as 
GA(q2), are described in a similar way, the situation 
concerning an effective dipole description is different. 
In the case of  FV(q 2) [eq. (1)], the pNN formfactor 
corresponds roughly to the p-meson propagator there- 
by leading to a dipole form o f F 2  V with a mass of  rough- 
ly m o . Concerning Ga(q2 ) [eq. (3)] a dipole form with 
a cutoff  mass mA1 of roughly 1.2 GeV could only re- 
sult if the A l - n u c l e o n  formfactor would be similar to 
the A 1 propagator. However this is not the case. The 
resulting A 1 nucleon formfactor corresponds to a 
monopole form with a cutoff  mass A ~ 0 .7-0.85 GeV. 
Comparing with the A 1 propagator for a mass o f m h ~  

1.2 GeV we recognize that a dipole form for GA( q ) 
with A ~ 1.1 -1 .2  GeV, will not result. Not even ap- 
proximately. 

We have calculated the A l -nuc l eon  formfactor 
KA 1 (q2) using the following meson-nucleon formfac- 
tors as determined in ref. [4] (q2 = q2): 

K~(q2) = [A2/(A 2 + q2)] A ~ / ( A ~  + qn,~) (4) 

for a = 7rNN, pNN, 1rNA and pNA. n~ = 4 for a = 7rNN, 
pNN and na = 6 for a = rrNA and pNA. The formfac- 
tors are normalized according to 

Kc~(q2) -+ 1 fo rq  2 ~ 0 .  

Kc~(q2) _+ KQCD (q2) ~ 1/q(nc~+2) for q2 ._, o~ 

The constants A1, A 2 are 

NNTr: A 1 = 1.0 GeV; 7rNA: A 1 = 1.0 GeV; 

NNp: A 1 = 0.78 GeV; pNA: A 1 = 0.78 GeV; 

A 2 = 2.58 GeV for 7rNN and pNN; 

A 2 = 2.0 GeV for 7rNA and pNA. 

Note that due to the high momentum fall-off of  the 
meson-nucleon formfactors no additional cutoffs in 
the calculation o f  the contributions fig. lb are neces- 
sary. No free parameters are involved. 

In fig. 2 we show our resulting A 1-nucle°n  form- 
factor KA. (q2). The corresponding monopole forms 
at low and high momentum transfers are also shown. 
We see that KA1 (q2) is not well represented by a mo- 
nopole. At low momentum transfer KA1 (q2) follows 
a monopole with A ~ 0.85 GeV; at momentum trans- 
fer q2 ~ 1 (GeV/c) 2 the corresponding monopole cut- 
off  is about A ~ 0.7 GeV. The calculated formfactor 
KA 1 (q2) is well represented by eq. (4) with A 1 = 0.85 
GeV and A 2 = 1.38 GeV. 

With the determination OfKA~ (q2) the axial form- 
factor GA(q 2) is given through eq. (3). The result is 

1.0 

0.8 

O6 

0.4 

0.2 

2 Ka,(q ) 

\ ~ ~ ~ A=0.85  GeV 

02  O z * 0.6 0.8 1.0 q 2(GeV/~ )z 

Fig. 2. Calculated A 1 - n u c l e o n  formfactor  KA. (q2) corre- 
sponding to fig. lb  2. Monopole forms for A = ~).85 GeV and 
0.7 GeV are also shown for comparison. The calculated form- 
factor is well fitted by the form given in eq. (4). 
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more detailed analysis [1]. We realize that FV(q 2) 
does not depend only on the p-propagator but also on 
the pNN vertex function. As the p-meson decays main- 
ly into 27r, the dominant contributions to the vertex 
correction KoN N (q2) are those shown in fig. 1 a 2. We 
know from ref. [1] and our recent work [4] that 
KpNN ( q 2 )  is roughly given by a monopole with A 
~0 .8  GeV - at least up to q2 ~ 1 (GeV/c) 2. Therefore 
F V (q2) is roughly given by 

F V (q2) = ,[FV(o)/[1 + (q/mp) 2 ] } [1 + (q/0.8) 2 ] -1 

~ [(1 + q2/m2)2]-l, (2) 

i.e. by a dipole form with a cutt off  mass of  roughly 
the p-meson mass. 

Equivalently the axial formfactor GA(q2 ) via axial 
vector meson dominance (AMD) is (compare fig. lb) 

GA(q2)=~GA(O)/[I+(q/mA1)2])KA,(q2), (3) 

where mA1 = 1.2 GeV is the mass of  the AI(1 ÷) 
meson, (F ~ 3 0 0  MeV) and KAI(q2 ) is the A l - n u c l e o n  
vertex function. As the A 1 meson decays predominat- 
ly into 7r and p, the leading contributions are those 
shown in fig. 1 b. 

Although both formfactors, FV(q 2) as well as 
GA(q2), are described in a similar way, the situation 
concerning an effective dipole description is different. 
In the case of  FV(q 2) [eq. (1)], the pNN formfactor 
corresponds roughly to the p-meson propagator there- 
by leading to a dipole form o f F 2  V with a mass of  rough- 
ly m o . Concerning Ga(q2 ) [eq. (3)] a dipole form with 
a cutoff  mass mA1 of roughly 1.2 GeV could only re- 
sult if the A l - n u c l e o n  formfactor would be similar to 
the A 1 propagator. However this is not the case. The 
resulting A 1 nucleon formfactor corresponds to a 
monopole form with a cutoff  mass A ~ 0 .7-0.85 GeV. 
Comparing with the A 1 propagator for a mass o f m h ~  

1.2 GeV we recognize that a dipole form for GA( q ) 
with A ~ 1.1 -1 .2  GeV, will not result. Not even ap- 
proximately. 

We have calculated the A l -nuc l eon  formfactor 
KA 1 (q2) using the following meson-nucleon formfac- 
tors as determined in ref. [4] (q2 = q2): 

K~(q2) = [A2/(A 2 + q2)] A ~ / ( A ~  + qn,~) (4) 

for a = 7rNN, pNN, 1rNA and pNA. n~ = 4 for a = 7rNN, 
pNN and na = 6 for a = rrNA and pNA. The formfac- 
tors are normalized according to 

Kc~(q2) -+ 1 fo rq  2 ~ 0 .  

Kc~(q2) _+ KQCD (q2) ~ 1/q(nc~+2) for q2 ._, o~ 

The constants A1, A 2 are 

NNTr: A 1 = 1.0 GeV; 7rNA: A 1 = 1.0 GeV; 

NNp: A 1 = 0.78 GeV; pNA: A 1 = 0.78 GeV; 

A 2 = 2.58 GeV for 7rNN and pNN; 

A 2 = 2.0 GeV for 7rNA and pNA. 

Note that due to the high momentum fall-off of  the 
meson-nucleon formfactors no additional cutoffs in 
the calculation o f  the contributions fig. lb are neces- 
sary. No free parameters are involved. 

In fig. 2 we show our resulting A 1-nucle°n  form- 
factor KA. (q2). The corresponding monopole forms 
at low and high momentum transfers are also shown. 
We see that KA1 (q2) is not well represented by a mo- 
nopole. At low momentum transfer KA1 (q2) follows 
a monopole with A ~ 0.85 GeV; at momentum trans- 
fer q2 ~ 1 (GeV/c) 2 the corresponding monopole cut- 
off  is about A ~ 0.7 GeV. The calculated formfactor 
KA 1 (q2) is well represented by eq. (4) with A 1 = 0.85 
GeV and A 2 = 1.38 GeV. 

With the determination OfKA~ (q2) the axial form- 
factor GA(q 2) is given through eq. (3). The result is 
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Fig. 2. Calculated A 1 - n u c l e o n  formfactor  KA. (q2) corre- 
sponding to fig. lb  2. Monopole forms for A = ~).85 GeV and 
0.7 GeV are also shown for comparison. The calculated form- 
factor is well fitted by the form given in eq. (4). 
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We investigated the axial formfactor GA(q2) of the nucleon by considering axial vector meson dominance (AMD) of the 
A 1 ( 1 +, 1.2 GeV) meson. Inclusion of the A 1 -nucleon formfactor leads to an optimal agreement with experimental data up 
to q2 ~ 1 (GeV/c) 2. This indicates that vector-meson dominance is an excellent description both for electromagnetic and 
weak interaction formfactors at least up to this momentum transfer. Measurements of increased precision also at higher mo- 
mentum transfer would be highly desirable. 

The formfactors of the nucleon are of fundamental 
interest to strong, electromagnetic as well as weak in- 
teractions. Concerning electromagnetic interactions 
the hypothesis of vector meson dominance (VMD) 
turned out to be an extremely valuable description [1 ]. 
Although the electromagnetic formfactor FV(q 2) is 
not exactly of dipole form with a cut off A = mp it fol- 
lows roughly this form. Led by the success of the di- 
pole description for the electromagnetic formfactor it 
was tempting to expect a similar behaviour for the 
axial formfactor GA(q 2) with a mass o f m  A around 
1.2 GeV. 

Especially threshold n + electroproduction [2] has 
been studied extensively in order to obtain informa- 
tion on G A (q2). More directly G A (q2) can be obtain- 
ed through quasi-elastic neutrino scattering, although 
the statistical precision is not yet as good as in n-pro- 
duction measurements. The experiments show that a 
dipole form for GA(q2 ) with a mass of the known 
Al ( l+)  meson of about 1.1 1.2 GeV is in contradic- 
tion with the data. Insisting on a dipole form (or mo- 
nopole) for GA(q 2) leaving m A as a free parameter, 
the experiments favour m A around 0.9 1.0 GeV. This 
seems to be a very disappointing result and leads to 
the question whether the success of vector meson 
dominance is restricted to 1 --particles. 

In the present paper we shall show that this is ac- 

0.370-2693/84/$ 03.00 © Elsevier Science Publishers B.V. 
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tually not the case and that a more detailed view of 
the vector mesons is necessary. Especially the meson-- 
nucleon formfactors KpN N (q2) and K_A NN(q 2) play 

V ,~ 2 a crucial role in the description o f F  2 ( q )  and GA( q ) 
respectively. 

Let us start with the isovector formfactor FV(q2). 
Assuming vector meson dominance we have 

F~(q  2) = (FV(0) / I  1 + (q/rnp)2l) KpNN (q2). (1) 

KpNN (q2) is the meson-nuc leon  vertex correction. 
Compare fig. 1 a. We do not consider the effect of the 
decay width of the p-meson which is necessary in a 

Vg P .c N P rt 
. A 

(a,) (a2) 

,q--p. x---- AI T~ N 'I~ 

(bl) (bz) 

Fig. 1. Illustration of vector meson (al) and axial vector 
meson dominance (bl). (a2) , (b2) show the dominant contri- 
butions to the corresponding vector and axial vector meson- 
nucleon couplings. 
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more detailed analysis [1]. We realize that FV(q 2) 
does not depend only on the p-propagator but also on 
the pNN vertex function. As the p-meson decays main- 
ly into 27r, the dominant contributions to the vertex 
correction KoN N (q2) are those shown in fig. 1 a 2. We 
know from ref. [1] and our recent work [4] that 
KpNN ( q 2 )  is roughly given by a monopole with A 
~0 .8  GeV - at least up to q2 ~ 1 (GeV/c) 2. Therefore 
F V (q2) is roughly given by 

F V (q2) = ,[FV(o)/[1 + (q/mp) 2 ] } [1 + (q/0.8) 2 ] -1 

~ [(1 + q2/m2)2]-l, (2) 

i.e. by a dipole form with a cutt off  mass of  roughly 
the p-meson mass. 

Equivalently the axial formfactor GA(q2 ) via axial 
vector meson dominance (AMD) is (compare fig. lb) 

GA(q2)=~GA(O)/[I+(q/mA1)2])KA,(q2), (3) 

where mA1 = 1.2 GeV is the mass of  the AI(1 ÷) 
meson, (F ~ 3 0 0  MeV) and KAI(q2 ) is the A l - n u c l e o n  
vertex function. As the A 1 meson decays predominat- 
ly into 7r and p, the leading contributions are those 
shown in fig. 1 b. 

Although both formfactors, FV(q 2) as well as 
GA(q2), are described in a similar way, the situation 
concerning an effective dipole description is different. 
In the case of  FV(q 2) [eq. (1)], the pNN formfactor 
corresponds roughly to the p-meson propagator there- 
by leading to a dipole form o f F 2  V with a mass of  rough- 
ly m o . Concerning Ga(q2 ) [eq. (3)] a dipole form with 
a cutoff  mass mA1 of roughly 1.2 GeV could only re- 
sult if the A l - n u c l e o n  formfactor would be similar to 
the A 1 propagator. However this is not the case. The 
resulting A 1 nucleon formfactor corresponds to a 
monopole form with a cutoff  mass A ~ 0 .7-0.85 GeV. 
Comparing with the A 1 propagator for a mass o f m h ~  

1.2 GeV we recognize that a dipole form for GA( q ) 
with A ~ 1.1 -1 .2  GeV, will not result. Not even ap- 
proximately. 

We have calculated the A l -nuc l eon  formfactor 
KA 1 (q2) using the following meson-nucleon formfac- 
tors as determined in ref. [4] (q2 = q2): 

K~(q2) = [A2/(A 2 + q2)] A ~ / ( A ~  + qn,~) (4) 

for a = 7rNN, pNN, 1rNA and pNA. n~ = 4 for a = 7rNN, 
pNN and na = 6 for a = rrNA and pNA. The formfac- 
tors are normalized according to 

Kc~(q2) -+ 1 fo rq  2 ~ 0 .  

Kc~(q2) _+ KQCD (q2) ~ 1/q(nc~+2) for q2 ._, o~ 

The constants A1, A 2 are 

NNTr: A 1 = 1.0 GeV; 7rNA: A 1 = 1.0 GeV; 

NNp: A 1 = 0.78 GeV; pNA: A 1 = 0.78 GeV; 

A 2 = 2.58 GeV for 7rNN and pNN; 

A 2 = 2.0 GeV for 7rNA and pNA. 

Note that due to the high momentum fall-off of  the 
meson-nucleon formfactors no additional cutoffs in 
the calculation o f  the contributions fig. lb are neces- 
sary. No free parameters are involved. 

In fig. 2 we show our resulting A 1-nucle°n  form- 
factor KA. (q2). The corresponding monopole forms 
at low and high momentum transfers are also shown. 
We see that KA1 (q2) is not well represented by a mo- 
nopole. At low momentum transfer KA1 (q2) follows 
a monopole with A ~ 0.85 GeV; at momentum trans- 
fer q2 ~ 1 (GeV/c) 2 the corresponding monopole cut- 
off  is about A ~ 0.7 GeV. The calculated formfactor 
KA 1 (q2) is well represented by eq. (4) with A 1 = 0.85 
GeV and A 2 = 1.38 GeV. 

With the determination OfKA~ (q2) the axial form- 
factor GA(q 2) is given through eq. (3). The result is 
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Fig. 2. Calculated A 1 - n u c l e o n  formfactor  KA. (q2) corre- 
sponding to fig. lb  2. Monopole forms for A = ~).85 GeV and 
0.7 GeV are also shown for comparison. The calculated form- 
factor is well fitted by the form given in eq. (4). 
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We investigated the axial formfactor GA(q2) of the nucleon by considering axial vector meson dominance (AMD) of the 
A 1 ( 1 +, 1.2 GeV) meson. Inclusion of the A 1 -nucleon formfactor leads to an optimal agreement with experimental data up 
to q2 ~ 1 (GeV/c) 2. This indicates that vector-meson dominance is an excellent description both for electromagnetic and 
weak interaction formfactors at least up to this momentum transfer. Measurements of increased precision also at higher mo- 
mentum transfer would be highly desirable. 

The formfactors of the nucleon are of fundamental 
interest to strong, electromagnetic as well as weak in- 
teractions. Concerning electromagnetic interactions 
the hypothesis of vector meson dominance (VMD) 
turned out to be an extremely valuable description [1 ]. 
Although the electromagnetic formfactor FV(q 2) is 
not exactly of dipole form with a cut off A = mp it fol- 
lows roughly this form. Led by the success of the di- 
pole description for the electromagnetic formfactor it 
was tempting to expect a similar behaviour for the 
axial formfactor GA(q 2) with a mass o f m  A around 
1.2 GeV. 

Especially threshold n + electroproduction [2] has 
been studied extensively in order to obtain informa- 
tion on G A (q2). More directly G A (q2) can be obtain- 
ed through quasi-elastic neutrino scattering, although 
the statistical precision is not yet as good as in n-pro- 
duction measurements. The experiments show that a 
dipole form for GA(q2 ) with a mass of the known 
Al ( l+)  meson of about 1.1 1.2 GeV is in contradic- 
tion with the data. Insisting on a dipole form (or mo- 
nopole) for GA(q 2) leaving m A as a free parameter, 
the experiments favour m A around 0.9 1.0 GeV. This 
seems to be a very disappointing result and leads to 
the question whether the success of vector meson 
dominance is restricted to 1 --particles. 

In the present paper we shall show that this is ac- 
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tually not the case and that a more detailed view of 
the vector mesons is necessary. Especially the meson-- 
nucleon formfactors KpN N (q2) and K_A NN(q 2) play 

V ,~ 2 a crucial role in the description o f F  2 ( q )  and GA( q ) 
respectively. 

Let us start with the isovector formfactor FV(q2). 
Assuming vector meson dominance we have 

F~(q  2) = (FV(0) / I  1 + (q/rnp)2l) KpNN (q2). (1) 

KpNN (q2) is the meson-nuc leon  vertex correction. 
Compare fig. 1 a. We do not consider the effect of the 
decay width of the p-meson which is necessary in a 
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Fig. 1. Illustration of vector meson (al) and axial vector 
meson dominance (bl). (a2) , (b2) show the dominant contri- 
butions to the corresponding vector and axial vector meson- 
nucleon couplings. 
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more detailed analysis [1]. We realize that FV(q 2) 
does not depend only on the p-propagator but also on 
the pNN vertex function. As the p-meson decays main- 
ly into 27r, the dominant contributions to the vertex 
correction KoN N (q2) are those shown in fig. 1 a 2. We 
know from ref. [1] and our recent work [4] that 
KpNN ( q 2 )  is roughly given by a monopole with A 
~0 .8  GeV - at least up to q2 ~ 1 (GeV/c) 2. Therefore 
F V (q2) is roughly given by 

F V (q2) = ,[FV(o)/[1 + (q/mp) 2 ] } [1 + (q/0.8) 2 ] -1 

~ [(1 + q2/m2)2]-l, (2) 

i.e. by a dipole form with a cutt off  mass of  roughly 
the p-meson mass. 

Equivalently the axial formfactor GA(q2 ) via axial 
vector meson dominance (AMD) is (compare fig. lb) 

GA(q2)=~GA(O)/[I+(q/mA1)2])KA,(q2), (3) 

where mA1 = 1.2 GeV is the mass of  the AI(1 ÷) 
meson, (F ~ 3 0 0  MeV) and KAI(q2 ) is the A l - n u c l e o n  
vertex function. As the A 1 meson decays predominat- 
ly into 7r and p, the leading contributions are those 
shown in fig. 1 b. 

Although both formfactors, FV(q 2) as well as 
GA(q2), are described in a similar way, the situation 
concerning an effective dipole description is different. 
In the case of  FV(q 2) [eq. (1)], the pNN formfactor 
corresponds roughly to the p-meson propagator there- 
by leading to a dipole form o f F 2  V with a mass of  rough- 
ly m o . Concerning Ga(q2 ) [eq. (3)] a dipole form with 
a cutoff  mass mA1 of roughly 1.2 GeV could only re- 
sult if the A l - n u c l e o n  formfactor would be similar to 
the A 1 propagator. However this is not the case. The 
resulting A 1 nucleon formfactor corresponds to a 
monopole form with a cutoff  mass A ~ 0 .7-0.85 GeV. 
Comparing with the A 1 propagator for a mass o f m h ~  

1.2 GeV we recognize that a dipole form for GA( q ) 
with A ~ 1.1 -1 .2  GeV, will not result. Not even ap- 
proximately. 

We have calculated the A l -nuc l eon  formfactor 
KA 1 (q2) using the following meson-nucleon formfac- 
tors as determined in ref. [4] (q2 = q2): 

K~(q2) = [A2/(A 2 + q2)] A ~ / ( A ~  + qn,~) (4) 

for a = 7rNN, pNN, 1rNA and pNA. n~ = 4 for a = 7rNN, 
pNN and na = 6 for a = rrNA and pNA. The formfac- 
tors are normalized according to 

Kc~(q2) -+ 1 fo rq  2 ~ 0 .  

Kc~(q2) _+ KQCD (q2) ~ 1/q(nc~+2) for q2 ._, o~ 

The constants A1, A 2 are 

NNTr: A 1 = 1.0 GeV; 7rNA: A 1 = 1.0 GeV; 

NNp: A 1 = 0.78 GeV; pNA: A 1 = 0.78 GeV; 

A 2 = 2.58 GeV for 7rNN and pNN; 

A 2 = 2.0 GeV for 7rNA and pNA. 

Note that due to the high momentum fall-off of  the 
meson-nucleon formfactors no additional cutoffs in 
the calculation o f  the contributions fig. lb are neces- 
sary. No free parameters are involved. 

In fig. 2 we show our resulting A 1-nucle°n  form- 
factor KA. (q2). The corresponding monopole forms 
at low and high momentum transfers are also shown. 
We see that KA1 (q2) is not well represented by a mo- 
nopole. At low momentum transfer KA1 (q2) follows 
a monopole with A ~ 0.85 GeV; at momentum trans- 
fer q2 ~ 1 (GeV/c) 2 the corresponding monopole cut- 
off  is about A ~ 0.7 GeV. The calculated formfactor 
KA 1 (q2) is well represented by eq. (4) with A 1 = 0.85 
GeV and A 2 = 1.38 GeV. 

With the determination OfKA~ (q2) the axial form- 
factor GA(q 2) is given through eq. (3). The result is 
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Fig. 2. Calculated A 1 - n u c l e o n  formfactor  KA. (q2) corre- 
sponding to fig. lb  2. Monopole forms for A = ~).85 GeV and 
0.7 GeV are also shown for comparison. The calculated form- 
factor is well fitted by the form given in eq. (4). 
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We investigated the axial formfactor GA(q2) of the nucleon by considering axial vector meson dominance (AMD) of the 
A 1 ( 1 +, 1.2 GeV) meson. Inclusion of the A 1 -nucleon formfactor leads to an optimal agreement with experimental data up 
to q2 ~ 1 (GeV/c) 2. This indicates that vector-meson dominance is an excellent description both for electromagnetic and 
weak interaction formfactors at least up to this momentum transfer. Measurements of increased precision also at higher mo- 
mentum transfer would be highly desirable. 

The formfactors of the nucleon are of fundamental 
interest to strong, electromagnetic as well as weak in- 
teractions. Concerning electromagnetic interactions 
the hypothesis of vector meson dominance (VMD) 
turned out to be an extremely valuable description [1 ]. 
Although the electromagnetic formfactor FV(q 2) is 
not exactly of dipole form with a cut off A = mp it fol- 
lows roughly this form. Led by the success of the di- 
pole description for the electromagnetic formfactor it 
was tempting to expect a similar behaviour for the 
axial formfactor GA(q 2) with a mass o f m  A around 
1.2 GeV. 

Especially threshold n + electroproduction [2] has 
been studied extensively in order to obtain informa- 
tion on G A (q2). More directly G A (q2) can be obtain- 
ed through quasi-elastic neutrino scattering, although 
the statistical precision is not yet as good as in n-pro- 
duction measurements. The experiments show that a 
dipole form for GA(q2 ) with a mass of the known 
Al ( l+)  meson of about 1.1 1.2 GeV is in contradic- 
tion with the data. Insisting on a dipole form (or mo- 
nopole) for GA(q 2) leaving m A as a free parameter, 
the experiments favour m A around 0.9 1.0 GeV. This 
seems to be a very disappointing result and leads to 
the question whether the success of vector meson 
dominance is restricted to 1 --particles. 

In the present paper we shall show that this is ac- 
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tually not the case and that a more detailed view of 
the vector mesons is necessary. Especially the meson-- 
nucleon formfactors KpN N (q2) and K_A NN(q 2) play 

V ,~ 2 a crucial role in the description o f F  2 ( q )  and GA( q ) 
respectively. 

Let us start with the isovector formfactor FV(q2). 
Assuming vector meson dominance we have 

F~(q  2) = (FV(0) / I  1 + (q/rnp)2l) KpNN (q2). (1) 

KpNN (q2) is the meson-nuc leon  vertex correction. 
Compare fig. 1 a. We do not consider the effect of the 
decay width of the p-meson which is necessary in a 

Vg P .c N P rt 
. A 

(a,) (a2) 

,q--p. x---- AI T~ N 'I~ 

(bl) (bz) 

Fig. 1. Illustration of vector meson (al) and axial vector 
meson dominance (bl). (a2) , (b2) show the dominant contri- 
butions to the corresponding vector and axial vector meson- 
nucleon couplings. 
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❖ How to connect to the nucleon?  
 
 
 
 

Axial form factor constrained from Tau data and nucleon data 
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• Use Axial Vector Meson 
Dominance assumption

FA(q2) = fA→3π (q2) ⋅ KA (q2)

Method: Dispersive representation 2

thr

t

spacelike timelike

t

N

_

...

hadronic
states

N
t > t thr

=F

Isovector: ππ (incl. ρ), 4π,KK̄, ...
Isoscalar: 3π (incl.ω), KK̄ (incl. φ), ...

• Dispersive representation

Fi(t) =

∞∫

tthr

dt′

π

ImFi(t
′)

t′ − t − i0

Expresses analytic structure of Fi(t)

• Spectral functions ImFi(t)

Current → hadronic states → NN̄

Processes in unphysical region t < 4M2
N

Spectral functions to be provided by theory
Frazer, Fulco 1960; Höhler et al 1975+
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Axial form factor of the nucleon
FA(Q�) = fa�(Q�)Pa�NN(Q�) ,

I fa�(Q�): from ⌧ ! �⇡
I Pa�NN(Q�): a�-NN vertex function
I if Pa�NN(Q�) = �: direct extrapolation of fa�(Q�)
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Conclusion and Outlook
❖ With neutrino physics entering precision era, we have new 

demands for better understanding of neutrino-nucleon 
interactions

❖ The problem has many facets:

• Old, schematic dipole parametrisation of the nucleon form-
factors urgently needs to be revisited and improved

• The results need to be combined with other hadronic effects, 
e.g., both resonant and non-resonant pion production.

• Further, one needs to incorporate nuclear effects, such as two-
nucleon currents and final-state interactions

!58Emilie Passemar



Conclusion and Outlook
❖ The axial form factor is not so well known, but we have several 

methods to tackle the problem:

• We have identified which Q2 are the most relevant for quasi 
elastic neutrino nucleus new measurements  
This corresponds to Q2 < 2 GeV2  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Conclusion and Outlook
❖ The axial form factor is not so well known, but we have several 

methods to tackle the problem:

• At low and high Q2 we can use ChPT and pQCD

• The intermediate Q2 region (~1 GeV2)  is challenging, but LQCD 
has been making remarkable progress. 

• z-parametrization is a good method to relax the overly 
restrictive dipole parametrisation

• Analytically: we can use analyticity and dispersive techniques, 
and take advantage the tau data to learn about the properties of 
the 3𝝅 intermediate state  

!60

presently being developed

Bhattacharya, Hill, Paz’11

See talk by M. Constantinou
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❖ How to connect to the nucleon?  

Axial form factor constrained from Tau data and nucleon data 
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• Introduce a q2 dependance

FA(q2) = fA→3π (q2) ⋅ (1 − ⟨r2
A⟩a1NN) q2

⟨r2
A⟩ = ⟨r2

A⟩a1+⟨r2
A⟩a1NN

⟨r2
A⟩ = 0.14(1)[fm2]+0.09(1)[fm2]

= 0.23(1)[fm2]
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Axial form factor of the nucleon
FA(Q�) = fa�(Q�)Pa�NN(Q�) = fa�(Q�)

�

�+ hr�Aia�NN ⇥ Q�
�

,

I hr�Ai = hr�Aia� + hr�Aia�NN = �.��(�) [fm�]��.��(�) [fm�]��.��(�)
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Method: Dispersive representation 2
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Expresses analytic structure of Fi(t)

• Spectral functions ImFi(t)

Current → hadronic states → NN̄
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Spectral functions to be provided by theory
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❖ How to connect to the nucleon?  

Axial form factor constrained from Tau data and nucleon data 

!63

• Introduce a q2 dependance

FA(q2) = fA→3π (q2) ⋅ (1 − ⟨r2
A⟩a1NN) q2
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Expanding the normalized axial form factor around Q� = �

eFA(Q�) = �� �
�hr

�
AiQ� +

�
���hr

�
Ai(Q�)� + · · ·

Reference mA [GeV] hr�Ai [fm�]
K�K �.��± �.�� �.��± �.��
NOMAD �.��± �.�� �.��± �.��
MiniBoonNE �.��± �.�� �.��± �.��
MINERvA �.�� �.��
MINOS �.��+�.����.�� �.��+�.����.��
This work (preliminary) — �.��(�)

Table: Axial mass and squared axial radius determinations from
neutrino scattering experiments.
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FA(q2) = gA (1 +
1
6

⟨r2⟩q2 + 𝒪(q4))
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z parametrisation for the FF
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where
Èr2

AÍ = 12
m2

A

. (6)

The resulting values for Èr2
AÍ as for the values of mA are summarized in third column of

Table 1.
Another shortcoming inherent to the election of the dipole ansatz is that it leads (the-

oretical) systematic uncertainties di�cult to quantify. As an attempt to improve on that,
the authors of Ref. [4] proposed a parametrization based on the product of two monopoles
including the axial a1 © a1(1260) and aÕ

1 © a1(1640) resonances

Âf(q2) © f(q2)
f(0) = 1

1
1 ≠ q2/ma2

1

2 1
1 ≠ q2/m2

aÕ
1

2 , (7)

and the net e�ect were found to be essentially a dipole form factor with an average mass
larger than the usual dipole (cf. Eq. (4)).

To complete the overview, we briefly describe the z-expansion, a more flexible and
model-independent parametrization of the nucleon axial form factor. Exploiting the an-
alyticity and positivity properties of the vacuum polarization functions, Okubo and col-
laborators proposed the method of unitary bounds [18] in the context of kaon decays,
which later on was applied for semileptonic B decays [20, 21]. This method, called z-
parameterization and reviewed in Refs. [19, 22], parameterizes the nucleon form factor as a
Taylor expansion in terms of a conformal complex variable z defined as follows (q2 = ≠Q2)

z(q2, sth, q0) =
Ô

sth ≠ q2 ≠
Ô

sth ≠ q0Ô
sth ≠ q2 + Ô

sth ≠ q0
, (8)

where sth = 9m2
fi and q0 is an unphysical free parameter, that corresponds to z(q0) = 0,

chosen to optimize the fit. The form factor can be then written as power series in terms
of the new variable

fA(q2) =
Œÿ

k=0
akz(q2)k . (9)

This conformal transformation expansion guarantees unitarity constraints on its coe�cientsqŒ
k=0 |ak|2 Æ 1 and the convergence of the series within the unit circle |z(q2)| < 1. As a

result, the z-expansion provides a prescription to accommodate any form factor shape
introducing more parameters as data improves thus providing a systematic error.

Let us comment that the z-parameterization is not a zero-preserving transformation
with respect of q2 unless the particular choice q2

0 = 0 is made, which implies z æ 0 does
not come from q2 æ 0, but rather from a large q2 value. This poses a word of caution
when using the z-parameterization to determine the behavior of the form factor at low q2.

Bounds on the coe�cients ak have been set in Refs. [16, 17] by imposing the simplest
Breit-Wigner ansatz form for the form factor

fA(q2) =
m2

a
1

m2
a

1

≠ q2 ≠ ima
1

�a
1

, (10)

4

where
Èr2

AÍ = 12
m2

A

. (6)

The resulting values for Èr2
AÍ as for the values of mA are summarized in third column of

Table 1.
Another shortcoming inherent to the election of the dipole ansatz is that it leads (the-

oretical) systematic uncertainties di�cult to quantify. As an attempt to improve on that,
the authors of Ref. [4] proposed a parametrization based on the product of two monopoles
including the axial a1 © a1(1260) and aÕ

1 © a1(1640) resonances

Âf(q2) © f(q2)
f(0) = 1

1
1 ≠ q2/ma2

1

2 1
1 ≠ q2/m2

aÕ
1

2 , (7)

and the net e�ect were found to be essentially a dipole form factor with an average mass
larger than the usual dipole (cf. Eq. (4)).

To complete the overview, we briefly describe the z-expansion, a more flexible and
model-independent parametrization of the nucleon axial form factor. Exploiting the an-
alyticity and positivity properties of the vacuum polarization functions, Okubo and col-
laborators proposed the method of unitary bounds [18] in the context of kaon decays,
which later on was applied for semileptonic B decays [20, 21]. This method, called z-
parameterization and reviewed in Refs. [19, 22], parameterizes the nucleon form factor as a
Taylor expansion in terms of a conformal complex variable z defined as follows (q2 = ≠Q2)

z(q2, sth, q0) =
Ô

sth ≠ q2 ≠
Ô

sth ≠ q0Ô
sth ≠ q2 + Ô

sth ≠ q0
, (8)

where sth = 9m2
fi and q0 is an unphysical free parameter, that corresponds to z(q0) = 0,

chosen to optimize the fit. The form factor can be then written as power series in terms
of the new variable

fA(q2) =
Œÿ

k=0
akz(q2)k . (9)

This conformal transformation expansion guarantees unitarity constraints on its coe�cientsqŒ
k=0 |ak|2 Æ 1 and the convergence of the series within the unit circle |z(q2)| < 1. As a

result, the z-expansion provides a prescription to accommodate any form factor shape
introducing more parameters as data improves thus providing a systematic error.
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4

quasielastic neutrino scattering, Q2 = −q2 ≥ 0. As discussed in the Introduction, an expansion
at q2 = 0 defines an “axial mass parameter” mA, via

FA(q
2) = FA(0)

[

1 +
2

m2
A

q2 + . . .

]

=⇒ mA ≡

√

2FA(0)

F ′
A(0)

. (5)

Equivalently, we may define an “axial radius” rA, via

FA(q
2) = FA(0)

[

1 +
r2A
6
q2 + . . .

]

=⇒ rA ≡

√

6F ′
A(0)

FA(0)
. (6)

The factors appearing in (5) and (6) are purely conventional, motivated by the dipole ansatz
(2), and by the analogous charge-radius definition for the vector form factors. Asymptotically,
perturbative QCD predicts [10, 11] a ∼ 1/Q4 scaling, up to logarithms, for the axial-vector
form factor. However, the region Q2 ! 1GeV2 is far from asymptotic, and the functional
dependence of FA(q2) remains poorly constrained at accessible neutrino energies.

2.2 Analyticity

−Q2
max 9m2

π

t z

Figure 1: Conformal mapping of the cut plane to the unit circle.

We proceed along lines similar to the vector form factor analysis in [9]. Recall the dispersion
relation for the form factor,

FA(t) =
1

π

∫ ∞

tcut

dt′
ImFA(t′ + i0)

t′ − t
, (7)

where t ≡ q2 and the integral starts at the three-pion cut, tcut = 9m2
π. We can make use

of this model-independent knowledge by noticing that the separation between the singular
region, t ≥ tcut, and the kinematically allowed physical region, t ≤ 0, implies the existence of
a small expansion parameter, |z| < 1. As illustrated in Fig. 1, by a standard transformation,
we map the domain of analyticity onto the unit circle in such a way that the physical region
is mapped onto an interval:

z(t, tcut, t0) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

, (8)

3

Bhattacharya, Hill and Paz’11

the RFG model with free parameter ϵb yields the value, without an assumption on the value
of mA, (for Q2

max = 1.0GeV2, kmax = 7)

ϵb = 28± 3MeV , (22)

where the result is insensitive to the choice of bound, |ak| ≤ 5 or |ak| ≤ 10.4 While the data
do not appear to favor significantly higher values of ϵb, we note that for ϵb = 34MeV [3], the
result (21) becomes mA(ϵb = 34MeV) = 1.05+0.45

−0.18± 0.12, compared to mdipole
A (ϵb = 34MeV) =

1.44± 0.05.
We have performed fits at different values of the parameter t0, finding no significant devia-

tion in the results. The results do not depend strongly on the precise value of the bound (e.g.
|ak| ≤ 5 versus |ak| ≤ 10). Similar to [9], we conclude that the estimation of shape uncer-
tainty in (21) should be conservative. The fit (21) yields coefficients5 a0 ≡ FA(0) = −1.269,
a1 = 2.9+1.1

−1.0, a2 = −8+6
−3. These values are in accordance with our assumption of order-unity

coefficient bounds. As discussed in the Introduction, current experiments do not significantly
constrain shape parameters beyond the linear term, a1.
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0.4

0.6
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1.4

Q2

−FA(−Q2)

Figure 3: Comparison of the axial-vector form factor FA as extracted using the z expansion
(green diamonds) and dipole ansatz (red circles).

Figure 3 compares the form factor extraction resulting from the z expansion fit to the
extraction from the dipole fit. Here we take Q2

max = 1.0GeV2, kmax = 7 and |ak| ≤ 10 for the
z fit. The dipole fit assumes mdipole

A = 1.29± 0.05GeV.

4 Comparison to charged pion electroproduction

The axial-vector component of the weak current defining FA(q2) in (3) can also be probed in
pion electroproduction measurements. The electric dipole amplitude for threshold charged-

4 Using a dipole ansatz for Q2
max = 1.0GeV2 without fixing m

dipole
A

yields ϵb = 22± 7MeV.
5 For this purpose we take kmax = 7 in (9) and enforce |ak| ≤ 10 for k ≥ 3.
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Èr2

AÍ = 12
m2

A

. (6)
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Table 1.
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quasielastic neutrino scattering, Q2 = −q2 ≥ 0. As discussed in the Introduction, an expansion
at q2 = 0 defines an “axial mass parameter” mA, via

FA(q
2) = FA(0)

[

1 +
2

m2
A

q2 + . . .

]

=⇒ mA ≡

√

2FA(0)

F ′
A(0)

. (5)

Equivalently, we may define an “axial radius” rA, via

FA(q
2) = FA(0)

[

1 +
r2A
6
q2 + . . .

]

=⇒ rA ≡

√

6F ′
A(0)

FA(0)
. (6)

The factors appearing in (5) and (6) are purely conventional, motivated by the dipole ansatz
(2), and by the analogous charge-radius definition for the vector form factors. Asymptotically,
perturbative QCD predicts [10, 11] a ∼ 1/Q4 scaling, up to logarithms, for the axial-vector
form factor. However, the region Q2 ! 1GeV2 is far from asymptotic, and the functional
dependence of FA(q2) remains poorly constrained at accessible neutrino energies.

2.2 Analyticity

−Q2
max 9m2

π

t z

Figure 1: Conformal mapping of the cut plane to the unit circle.

We proceed along lines similar to the vector form factor analysis in [9]. Recall the dispersion
relation for the form factor,

FA(t) =
1

π

∫ ∞

tcut

dt′
ImFA(t′ + i0)

t′ − t
, (7)

where t ≡ q2 and the integral starts at the three-pion cut, tcut = 9m2
π. We can make use

of this model-independent knowledge by noticing that the separation between the singular
region, t ≥ tcut, and the kinematically allowed physical region, t ≤ 0, implies the existence of
a small expansion parameter, |z| < 1. As illustrated in Fig. 1, by a standard transformation,
we map the domain of analyticity onto the unit circle in such a way that the physical region
is mapped onto an interval:

z(t, tcut, t0) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

, (8)
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
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and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the data sets.

Data set r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [55]. At representative

14 Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [31].
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experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
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sible CP violation and other new phenomena. This
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able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
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❖  𝝅 electroproduction using ChPT at threshold  
 
 
 
S-wave electric dipole amplitude of threshold charged pion 
electroproduction :

❖ This low energy theorem is strictly valid in the chiral limit (m" = 0) 
            Extrapolation using ChPT 

❖ Problem: most of experimental data outside of ChPT range  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challenges of excited states, lattice size, finite volume, as well as statistical noise. In many cases, the
need to extrapolate from unphysically large light quark masses is overcome by performing the lattice
calculation at (or near) the physical masses. Background field and correlator derivative techniques are
being explored to optimize the isolation of nucleon properties.22

Recent computations of the isovector axial charge with a complete stated error budget include: g
A

=
1.195(20)(33) [100], where the first error is due to extrapolating in lattice spacing, lattice volume and
light quark masses, and the second error is statistical and other systematics; and g

A

= 1.278(21)(26) [98],
where the first error is statistical and fitting systematics, and the second error is due to model selection in
the chiral and continuum extrapolation. Other recent preliminary results and discussions may be found
in Refs. [21, 22, 101–106]. We remark that QED radiative corrections are below the current lattice QCD
sensitivity, and the details of the g

A

definition in the presence of radiative corrections are thus not yet
relevant for this comparison. Note also that the isovector quark current is scale independent in the usual
MS scheme used to present lattice results.

Lattice QCD is approaching the few percent level for g
A

. A complete calculation of r2

A

that would
rival the precision of neutrino-nucleon scattering and muon capture is not yet available from lattice
QCD. However, illustrative values have been obtained, typically using simplified functional forms for
the q2 behavior, unphysically large light quark masses, and/or neglect of strange and charm quarks.
A dipole form factor ansatz fit to two-flavor lattice QCD extractions of F

A

(q2) [22] found a result,
r2

A

= 0.266(17)(7) fm2, where the first error is statistical and the second is systematic due to excited
states; this result lies closer to the “large m

A

” MiniBooNE dipole result [20] than to the “small m
A

”
historical dipole average [17, 107]. A z expansion fit to F

A

(q2) obtained using three-flavor QCD with
physical strange quark mass, and heavier-than-physical up and down quark masses (corresponding to
pion mass 317 MeV) [21], yielded r2

A

= 0.213(6)(13)(3)(0) fm2, where the uncertainties are from statistics,
excited states, fitting and renormalization. A first order z expansion fit to F

A

(q2) using two-flavor QCD,
extrapolated to physical pion mass [23] yielded r2

A

= 0.360(36)+80

�88

fm2, where the first error is statistical
and the second error is systematic. Finally, a z expansion fit to four-flavor lattice QCD data using a range
of lattice parameters [24] yielded r2

A

= 0.24(6) fm2. Some of these r2

A

values are well below the historical
dipole value and even disagree somewhat with our conservative average of r2

A

(avg.) = 0.45(16) fm2 in
Eq. (36). This situation suggests that either remaining lattice corrections, such as extrapolations to
physical pion mass, will involve large corrections that significantly shift the lattice determinations, or
perhaps more exciting that a disagreement may persist as further lattice progress is made, leading to a
new paradigm in our understanding of r2

A

. However, at this point, further work is needed to obtain precise
lattice results with more complete error budgets.

5.2.2 Pion electroproduction

Fits to pion electroproduction data have historically contributed to the determination of the axial radius,
with a small quoted uncertainty that can be traced to the assumed dipole form factor constraint. The
statistical power of available data would be comparable to the neutrino-deuteron scattering determination,
but relies on extrapolations beyond the regime of low energies where chiral corrections are controlled. The
axial form factor appears in a low energy theorem for the S-wave electric dipole amplitude of threshold
charged pion electroproduction (e�p ! e�n⇡+) [108, 109],

E
(�)

0+

��
m⇡=0

=

s

1 � q2

4m2

N

eg
A

8⇡f
⇡


F

A

(q2) +
q2

4m2

N

� 2q2

F
M

(q2)

�
. (41)

This low energy theorem is strictly valid in the chiral limit (m
⇡

= 0) for threshold production (invariant
mass W = m

N

+ m
⇡

in final state hadronic system). The chiral and threshold limits do not commute,
but corrections to the low energy theorem may be calculated within �PT [110]. Two complications enter.

22For recent examples and further references, see Refs. [95–99].

24

e−p → e−nπ+



❖ To reconstruct E𝝂: 

• Measure energy of all final state particles  
and add them up “Calorimetric method”

• In a realistic experiment not all energies  
can be accurately measured  
see S. Li and U. Mosel’s talks

• Cross section model needed to improve  
energy measurement by filling in the  
missing information 

• e.g., to go from total ionisation charge  
in LAr in DUNE or light in NOVA,  
need to predict its composition  

 

             requires accurate physical model of interaction

Energy Reconstruction

!67

3

FIG. 2. An example simulated 4 GeV ⌫µ event using GENIE

and FLUKA. The magenta energy deposits are caused by neu-
trons undergoing multiple scatterings; the orange color de-
notes energy originally carried by the prompt charged pion.

interactions (not shown). All these prompt particles
then propagate through the detector and—in addition to
ionization—can cause secondary interactions, knocking
out extra nucleons, as well as creating pions and � rays.
Bremsstrahlung radiation and nuclear de-excitations pro-
duce additional, low-energy �’s. To relate the resulting
ionization charge to the neutrino energy, full modeling of
the propagation process is required.

Even before running the full simulations, however, it
should be obvious that not all of the original neutrino
energy ends up in detectable ionization charge. Let us
consider some examples. First, the propagation process
increases particle multiplicity and reduces their average
energies. As the resulting cascade fully develops, some
particles become di�cult to detect. One is therefore nat-
urally led to the concept of detection thresholds as one
of the ways energy can be missed. Second, propagat-
ing hadrons can disrupt a number of argon nuclei in the
medium. The energy spent on this nuclear breakup does
not all translate to ionization. Third, some energy goes
to neutrinos in pion and muon decays, which escape the
detector. Our first task is to quantify the contributions of
these and other energy loss channels to the overall energy
flow in DUNE events.

Figure 2 shows an actual event from our simulations,
in which a muon, a ⇡

+, a proton, and two neutrons are
exiting the primary vertex. All the phenomena outlined
above are present. The charged hadrons are seen to un-
dergo secondary interactions, creating additional tracks.
The neutrons, being neutral, themselves do not leave ion-

ization tracks and can only be seen through charged par-
ticles created in secondary interactions. Their energy is
dissipated via numerous subthreshold particles and nu-
clear breakup. As will be seen later, they can also cre-
ate secondary hadronic showers, and these can be me-
ters away from the primary interaction. Neutrons thus
present a special challenge and we designate them in a
special category.

Notice that these considerations apply to both prompt
and secondary particles; to quantify the importance of
each missing energy channel one has to model the entire
event. Accordingly, we built a framework which combines
a neutrino event generator, GENIE, with a propagation
code, FLUKA. Using this framework, we model neutrino
and antineutrino interactions inside a liquid argon detec-
tor and simulate a large number of scattering events for
the energies relevant to DUNE.

The presentation is organized as follows. We begin, in
Sec. III, by reviewing the processes occurring in the pri-
mary interaction vertex and describing the prompt par-
ticles that can be created. We then describe how each
of these particle types propagate through the detector
medium, liquid argon. This part is essential for under-
standing the physics behind our findings. However, it can
be skipped at first reading by readers primarily interested
in our simulation results.

After this introduction, in Sec. IV A, we discuss a small
set of our simulated events, which will be seen to have
both sizable average missing energy and large event-to-
event variations. This motivated our two main analysis
goals.

The first goal is to establish the average contribution
of each missing energy channel. This question is an-
swered in Sec. IV B as a function of neutrino energy, for
both neutrino and antineutrino scattering. This estab-
lishes the average conversion functions between visible
charge and the true neutrino energy. Our second goal
is to characterize the event-by-event dispersion in the
visible charge. This dispersion leads to an intrinsic lim-
itation on how well the hadronic energy of each event
can be reconstructed, i.e., to finite energy resolution. We
report, in Sec. IV C, the resolution numbers of our sim-
ulations, under di↵erent sets of assumptions about re-
construction performance. This procedure yields a set of
migration matrices, connecting visible and true hadronic
energies, which can be used as inputs to oscillation stud-
ies. The implications of these results are further studied
in Sec. IV B. We compare the impact of di↵erent im-
provements on the energy resolution, which can inform
experimental priorities. We also categorize energy loss
channels in those that can be improved and those that
are intrinsic to this detector technology. Broader im-
plications of our results and outlook for the future are
presented in Sec. VI.
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FIG. 4: (color online) Schematic illustration of a CCQE inter-
action in the MiniBooNE detector. The primary Cherenkov
light from the muon (Cherenkov 1, first subevent) and sub-
sequent Cherenkov light from the decay-electron (Cherenkov
2, second subevent) are used to tag the CCQE event. No
requirements are made on the outgoing proton.

IV. CCQE MEASUREMENT

The goal of this measurement is to determine the dou-
ble differential cross section for the CCQE process on
carbon, νµ + n → µ− + p, where the target neutron is
bound in 12C.

The identification of CCQE interactions in the Mini-
BooNE detector relies solely on the detection of the
Cherenkov light from the primary (prompt) muon and
the associated decay-electron. An illustration of this
process is shown in Figure 4. Scintillation light is pro-
duced by the charged lepton and the recoil proton (or
nuclear fragments). However, with the reconstruction
employed here, this light is not separable from the dom-
inant Cherenkov light. In addition, the proton is typi-
cally below Cherenkov threshold. These conditions are
such that the proton is not separable from the charged
lepton and so no requirement is placed on the recoil pro-
ton in this analysis. This is to be contrasted with some
measurements of CCQE interactions that do require the
observation of a recoil proton for some part of the event
sample [10, 12–14]. An advantage of this insensitivity
to the proton recoil is that the extracted cross sections
are less dependent on proton final-state model uncertain-
ties. However, the disadvantage in not detecting the re-
coil nucleon is that contributions to scattering from other
nuclear configurations (such as two-nucleon correlations)
are inseparable. These contributions are, in the strictest
sense, not CCQE, but counted as such in our experimen-
tal definition.

A requirement of low veto activity for the CCQE sam-
ple ensures that all particles produced in the event stop
in the main region of the detector. This allows muons
to be tagged with high efficiency via their characteristic
electron-decay with τ ≈ 2 µs.

The CCQE interaction, including the muon decay, pro-

ceeds as,

1 : νµ + n → µ− + p

2 : ↪→ e− + ν̄e + νµ.

where each line in this equation identifies a subevent
(Section II B). The primary muon is identified with the
first subevent and the subsequent decay-electron with the
second subevent. At BNB neutrino energies, neutrino
interaction events that contain a primary muon predom-
inantly result from CCQE scattering as can be seen in
Table I.
The largest background is from CC single-pion pro-

duction (CC1π+). A CC1π+ interaction in the detector
consists of (with subevents labeled),

1 : νµ + p(n) → µ− + p(n) + π+

↪→ µ+ + νµ
2 : ↪→ e− + ν̄e + νµ
3 : ↪→ e+ + νe + ν̄µ.

Note that this interaction results in three subevents: the
primary interaction and two muon decays (the muon de-
cays can occur in any order). The π+ decays immediately
and light from the prompt decay products contribute to
the total light in the primary event. These events may
be removed from the CCQE sample by requiring exactly
two subevents. This requirement also reduces the back-
ground from NC processes to an almost negligible level
because they do not contain muons and thus have only
one subevent. This simple strategy results in a fairly pure
sample of CCQE events. However, a significant number
of CC1π+ events have only two subevents because one of
the decay electrons escapes detection: the µ− is captured
on 12C in the mineral oil (with 8% probability [47]) or
the π+ is absorbed. Additionally, the study of CC1π+

events for this analysis has indicated that the prediction
for the CC1π+ channel from the nuance event genera-
tor is not sufficiently accurate for this measurement [38].
For these reasons, the CC1π+ rate is measured using
a dedicated event sample. This differs from our previ-
ous strategy [11] where the default nuance-predicted
CC1π+ fraction (with no adjustments) was used, with
generous errors, in fits to the CCQE sample.
The resulting procedure for selecting the CCQE sam-

ple and measuring the CC1π+ background involves the
following steps:

1. selection of a “super-sample” of events with a clean
muon signature to isolate CC events (predomi-
nantly CCQE and CC1π+) via analysis cuts;

2. application of a subevent cut to separate the super-
sample into CCQE (2-subevents) and CC1π+ (3-
subevents) samples;

3. measurement of the CC1π+ rate from the CC1π+

sample;

MiniBooNE’10
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❖ To compute the neutrino-nucleus cross section in the quasi-elastic regime, 2 
parts: 

• From quarks to protons and neutrons              Form factors

•  From protons and neutrons to nucleus: 

❖ Nucleons in nucleus not at rest: at the minimum Fermi motion                    
              Relativistic Fermi Gas model

❖ More elaborated models include spectral functions and nucleon-
nucleon interactions 

Quasi-elastic Neutrino Cross Section

❖ To compute the neutrino-nucleus cross section in the quasi-elastic regime, 2 
parts: 

• From quarks to protons and neutrons              Form factors

•  From protons and neutrons to nucleus: 

❖ Nucleons in nucleus not at rest: at the minimum Fermi motion                    
              Relativistic Fermi Gas model

❖ More elaborated models include spectral functions and nucleon-
nucleon interactions 

General formula for cross section 
contains a product of the leptonic 
and hadronic tensors 

Pauli blocking p > pF Energy transfer > EB 
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Quasi-elastic Scattering
Within a single nucleus, there are still unknowns. . .

Cross section is parameterized by a series of form factors
(see Formaggio, Zeller [arXiv:1305.7513]):
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Neutrino Cross Section

!69

❖ To determine the oscillation probability  
           
              Need to know the Cross Section very precisely 

Φν(E) = Φνunosc(E) × P(νμ → νe)

P(νμ → νe)



❖ 4 form factors to determine

•              and              :  
        Can be related using CVC to EM processes 

Electromagnetic Form Factors
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Quasi-elastic Scattering
Within a single nucleus, there are still unknowns. . .

Cross section is parameterized by a series of form factors
(see Formaggio, Zeller [arXiv:1305.7513]):
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❖ 4 form factors to determine

•             : Axial Form Factor

•            : Pion pole approx.: 

❖ How to determine              experimentally? 

• 𝝂N scatt.: the best way but old data from 80s: 

• 𝝅 electroproduction using ChPT at threshold  
Also old extraction model dependent

• 𝝁 capture: allow to determine           

Axial and Pseudo-Scalar Form Factors

!71

⟨p(p′�) |J+μ
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2 (q2) + γμγ5FA(q2)+
1

mN
qμγ5FP(q2)}u(n)(p)

Quasi-elastic Scattering
Within a single nucleus, there are still unknowns. . .

Cross section is parameterized by a series of form factors
(see Formaggio, Zeller [arXiv:1305.7513]):
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FA(q2)

FP(q2) FP(q2) =
2m2

N

m2
π − q2

FA(q2)

FA(q2)

FP(q2)

BNL’81, ANL’82, FNAL’83 

Bernard, Kaiser & Meissner’01

Hill, Kammel, Marciano & Sirlin’18

Reanalysis by Meyer et al’16



Energy distribution of neutrino beams

❖ E𝝂 reconstruction from 
final state

Energy-Distributions of Neutrino Beams

SLAC 03/2017

Energy
must be
reconstructed
event by event,
within these
distributions

!72



Energy distribution of neutrino beams

❖ E𝝂 reconstruction from 
final state

Energy-Distributions of Neutrino Beams

SLAC 03/2017

Energy
must be
reconstructed
event by event,
within these
distributions

❖ Different Energy regions:
• Quasi-Elastic + FSI
• Resonance-pion production
• Deep Inelastic Scattering

!73



What do we know on the Form Factors?
❖ For intermediate energy region: Can try to use VMD

• Approximate spectral function with 2 narrow resonances  
 
 
And impose

• Has approximate dipole behaviour:  

!74

and impose

Arise from residues of  
nearby poles with equal  
magnitude and opposite signs



What do we know on the Form Factors?
❖ Better treatment of the spectral function  

           Dispersive parametrizations

Results: Spectral functions 5

Alarcon, Weiss, arXiv:1803.09748

• Spectral functions on ππ cut

Include ρ resonance through |Fπ(t)|2

Good agreement with Roy-Steiner analysis
Hoferichter et al 2017

• Qualitative improvement compared
to traditional χEFT

ππ rescattering effects included

Belushkin, Hammer, Meissner’06  
Lorenz, Hammer, Meissner’12  

Hoferichter et al’16
Leupold’17

Alarcon & Weiss’18
…

GV
M(t = q2) ≡ F1(q2) + F2(q2)

!75

Weiss @ CPIPANP18



❖ If we could expect such a parametrisation to work at very low 
energy or High Energy, there is no reason for it to work at ~1 GeV 
where MiniBooNE took data

❖ 30% discrepancy between MiniBooNE and NOMAD

Dipole Parametrization

!76

The discrepancy in MA is a consequence of apparent difference 
in the trend of the cross sections. So far unexplained. 



Axial Form Factor puzzle
❖ A priori not obvious how much of the 30% discrepancy in the 

MiniBooNE cross section due to axial FF versus nuclear effects. 

❖ However two reasons to consider the axial form factor seriously     
*supported by recent lattice results, see also 
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FIG. 9. The 8-point fit using Eq. (23) without the finite volume correction (c4 = 0) to the data for the axial radius squared hr2Ai.
The overlaid grey bands in the upper (bottom) row are fits to the single variable a (M2

⇡), i.e., ignoring possible dependence on
the other variable. The rest is the same as in Fig 8.
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FIG. 10. (Left) The data for GA(Q
2)/gA from the eight ensembles is plotted versus Q2 (GeV2). We also show the dipole

fit with the phenomenological estimates of the axial mass, MA = 1.026(21) GeV [13] (turquoise band), the miniBooNE
value MA = 1.35(17) GeV (green band), and our combined estimate MA = 1.42(12) GeV (magenta band) corresponding to
rA|dipole = 0.49(3) given in Eq. (24). The experimental data, reproduced from Ref. [13], were provided by Ulf Meissner. (Right)
A magnified view of the data and the three dipole fits in the region Q2 < 0.5 GeV2.

that the uncertainty versus M2

⇡ is reduced on neglecting
c
4

. Overall, the results of the simultaneous fits to data
obtained using the three ansatz are consistent. In Figs. 8
and 9, we also show fits versus a single variable (a or M2

⇡)
as a grey band. Given the weak dependence on a, M⇡ or
M⇡L, they give estimates that are consistent with results
of the simultaneous fits but with smaller uncertainty.

Our final estimates, using the data summarized in Ta-

ble VII for the case c
4

6= 0, are

rA|dipole = 0.49(3) fm ,

rA|z�expansion

= 0.46(6) fm ,

rA|combined

= 0.48(4) fm ,

MA|dipole = 1.39(9) GeV ,

MA|z�expansion

= 1.48(19) GeV ,

MA|combined

= 1.42(12) GeV . (24)
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FIG. 14. Our results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) using the plateau method for ts = 1.31 fm (filled blue squares).
In the left panel, the solid blue (orange) line shows the fit to our lattice QCD results extracted from the plateau at ts = 1.31 fm
(from the two-state fit) using Eq. (32). The experimental value of gA is shown with the black asterisk. The purple, red and
green bands are experimental results for Gu�d

A (Q2) taken from Refs. [59], [60] and [61] respectively. In the right panel, the
open blue squares show the prediction for Gu�d

p (Q2) assuming pion-pole dominance and using Eq. (34) to extract Gu�d
p (Q2)

from our lattice results for Gu�d
A (Q2) shown in the left panel, together with the corresponding fits, blue (orange) band is a fit

to the predicted Gu�d
p (Q2) using Gu�d

A (Q2) extracted from the plateau (two-state). The two fits are overlapping. The filled
blue squares show Gu�d

p (Q2) extracted directly from the nucleon matrix element with a fit to Eq. (39) (solid black line) after
omitting the two lowest Q2 values. The filled black circles are direct measurements of Gu�d

p (Q2) from Ref. [5]. The purple, red
and green bands use the experimental results for Gu�d

A (Q2) and pion pole to infer Gu�d
p (Q2).

FIG. 15. Gu�d
A (Q2) extracted from the plateau method at ts = 1.31 fm, fitted to the dipole form (grey band) and to the

z-expansion (blue band).

values are available, we plot, in Fig. 17, the sink-source separation t

s

= 1.31 fm and two-state fit methods alone for
better clarity. The disconnected contributions reduce the value of Gu+d

A

(Q2) and for zero momentum transfer result
in a value compatible with the experimental one. As already mentioned, the disconnected contributions to G

u+d

p

(Q2)
are particularly large and reduce its value especially at low values of Q2. Adding the connected and disconnected
contributions obtained using ~p

0 = ~0 for which common Q

2-values are available, yields the result shown in Fig. 18.
We note that, due to the fact that the disconnected part is computed with much higher statistics as compared to the

Gupta et al. PNDME collab.’17  Alexandrou et al.’17

Capitani et al’17

NF = 2, mπ = 130 MeV

NF = 2 + 1 + 1

!77



What is know on the Axial Form Factor?
❖ Recently very significant progress on two fronts:

• Lattice QCD results on                          and  
 
 
 
 
 
 
 
 
 
 
 
 
 

!78

FA(q2)gA ≡ FA(0)
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FIG. 9. The 8-point fit using Eq. (23) without the finite volume correction (c4 = 0) to the data for the axial radius squared hr2Ai.
The overlaid grey bands in the upper (bottom) row are fits to the single variable a (M2

⇡), i.e., ignoring possible dependence on
the other variable. The rest is the same as in Fig 8.
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FIG. 10. (Left) The data for GA(Q
2)/gA from the eight ensembles is plotted versus Q2 (GeV2). We also show the dipole

fit with the phenomenological estimates of the axial mass, MA = 1.026(21) GeV [13] (turquoise band), the miniBooNE
value MA = 1.35(17) GeV (green band), and our combined estimate MA = 1.42(12) GeV (magenta band) corresponding to
rA|dipole = 0.49(3) given in Eq. (24). The experimental data, reproduced from Ref. [13], were provided by Ulf Meissner. (Right)
A magnified view of the data and the three dipole fits in the region Q2 < 0.5 GeV2.

that the uncertainty versus M2

⇡ is reduced on neglecting
c
4

. Overall, the results of the simultaneous fits to data
obtained using the three ansatz are consistent. In Figs. 8
and 9, we also show fits versus a single variable (a or M2

⇡)
as a grey band. Given the weak dependence on a, M⇡ or
M⇡L, they give estimates that are consistent with results
of the simultaneous fits but with smaller uncertainty.

Our final estimates, using the data summarized in Ta-

ble VII for the case c
4

6= 0, are

rA|dipole = 0.49(3) fm ,

rA|z�expansion

= 0.46(6) fm ,

rA|combined

= 0.48(4) fm ,

MA|dipole = 1.39(9) GeV ,

MA|z�expansion

= 1.48(19) GeV ,

MA|combined

= 1.42(12) GeV . (24)

Gupta et al., PNDME collab.’17
17

FIG. 14. Our results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) using the plateau method for ts = 1.31 fm (filled blue squares).
In the left panel, the solid blue (orange) line shows the fit to our lattice QCD results extracted from the plateau at ts = 1.31 fm
(from the two-state fit) using Eq. (32). The experimental value of gA is shown with the black asterisk. The purple, red and
green bands are experimental results for Gu�d

A (Q2) taken from Refs. [59], [60] and [61] respectively. In the right panel, the
open blue squares show the prediction for Gu�d

p (Q2) assuming pion-pole dominance and using Eq. (34) to extract Gu�d
p (Q2)

from our lattice results for Gu�d
A (Q2) shown in the left panel, together with the corresponding fits, blue (orange) band is a fit

to the predicted Gu�d
p (Q2) using Gu�d

A (Q2) extracted from the plateau (two-state). The two fits are overlapping. The filled
blue squares show Gu�d

p (Q2) extracted directly from the nucleon matrix element with a fit to Eq. (39) (solid black line) after
omitting the two lowest Q2 values. The filled black circles are direct measurements of Gu�d

p (Q2) from Ref. [5]. The purple, red
and green bands use the experimental results for Gu�d

A (Q2) and pion pole to infer Gu�d
p (Q2).

FIG. 15. Gu�d
A (Q2) extracted from the plateau method at ts = 1.31 fm, fitted to the dipole form (grey band) and to the

z-expansion (blue band).

values are available, we plot, in Fig. 17, the sink-source separation t

s

= 1.31 fm and two-state fit methods alone for
better clarity. The disconnected contributions reduce the value of Gu+d

A

(Q2) and for zero momentum transfer result
in a value compatible with the experimental one. As already mentioned, the disconnected contributions to G

u+d

p

(Q2)
are particularly large and reduce its value especially at low values of Q2. Adding the connected and disconnected
contributions obtained using ~p

0 = ~0 for which common Q

2-values are available, yields the result shown in Fig. 18.
We note that, due to the fact that the disconnected part is computed with much higher statistics as compared to the

 Alexandrou et al., ETMC’17

NF = 2 + 1 + 1

 see talk by M. Constantinou
Emilie Passemar !


