ν_e AND ν_μ PARTICLE ID WITH MACHINE LEARNING

Stefano Calí, Jonas Eschle, Martina Ferrillo, Jack Jenkins, Kevin Keefe, Edward Millard, Brant Rumberger, Yicong Sui
Motivation

Particle Identification (PID) is a crucial challenge in experimental particle physics, ranging from high energy to astro-particle experiments.

Aim of the Project

In a neutrino oscillation experiment (\(\nu_\mu \rightarrow \nu_e \)) determine the number of detected \(\nu_e \) interactions on top of 1M of \(\nu_\mu \)s to get a 5 \(\sigma \) significance \(Z \).

\[
Z = \frac{n_s}{\sqrt{n_s + n_b}}
\]
LArTPC - Liquid Argon Time Projection Chamber

Provides 3D tracking and dE/dx measurement:

1. **Charged particle** enters fiducial volume and **ionises** medium

2. Primary ionisation **drifts** in uniform electric field to **readout plane** (XY)

3. Drift component (Z) reconstructed using drift velocity and trigger time
MACHINE LEARNING
“[…] What we want is a machine that can learn from experience”

Alan Turing, 1947
MACHINE LEARNING IN A NUTSHELL (II)

• Input data X_i - features
• Train a model - f
• Make predictions Y on new data
The Training Process step by step

- Provide the input \(X_i \) to the neural network
- Calculate how far is the prediction \(\hat{Y} \) from the truth \(Y \) - Loss function \(\mathcal{L} \)
- Determine the gradient of \(\mathcal{L} \) with respect to the parameters \(w_i \)
- Update the parameters \(w_{i+1} \)

\[w_{i+1} = w_i - \alpha \cdot \nabla_w \mathcal{L} \]

Optimisation algorithm, e.g. Stochastic Gradient Descent evaluated on batches of the input data
THE PROBLEM: IMAGE CLASSIFICATION WITH ML APPROACH
THE PROBLEM: IMAGE CLASSIFICATION WITH ML APPROACH

CONVOLUTIONAL NEURAL NETWORKS (CNNs)

$P(\nu_e)$
CONVOLUTIONAL LAYERS

Image (Visual Observation) \times Convolution = Feature Map
DEEP NEURAL NETWORK OPTIMISATION AND RESULTS
DNN Architecture Modifications

- Expand the training sample set by including a second 2D projection of the same track — more **features**

- **Hyper-parameters** tuning, e.g. number of layers, batch size etc.

- **Data augmentation**, *i.e.* artificially increase the training sample size

- **Spatial Transformer Network**
Loss and Accuracy

Cross entropy Loss: \(- \sum_{i=1}^{N} Y_i \log(\hat{Y}_i) \)

Accuracy: \(\frac{\text{Nr. Correct predictions}}{\text{Tot. nr. predictions}} \)

![Graph showing training and test loss and accuracy over epochs.](image)
PERFORMANCES AND RESULTS

![Performance Diagram]

SSI 2019 | S. Calí, J. Eschle, M. Ferrillo, J. Jenkins, K. Keefe, E. Millard, B. Rumberger, Y. Sui
Performances and Results

<table>
<thead>
<tr>
<th>Prediction</th>
<th>True Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prediction</th>
<th>True Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

![Graph showing performance and results](image_url)

SSI 2019 | S. Calí, J. Eschle, M. Ferrillo, J. Jenkins, K. Keefe, E. Millard, B. Rumberger, Y. Sui
Training data examples

\[\gamma \]

\[\mu^- \]

\[\pi^+ \]

\[e^- \]

\[p \]
PERFORMANCES AND RESULTS

Prediction Accuracy on the test set:

Average: $\approx 88.6\% \text{ w.r.t. (80\%)}$

Electrons: $\approx 92\%$
Assuming: Electron events only contaminated by mis-identification of muon events

Given $N^{\text{tot}}_{\nu_\mu} = 10^6$ events, a 5σ observation requires:

$$\text{Significance} \quad Z = \frac{n_s}{\sqrt{n_s + n_b}} \geq 5$$

where

$$n_s = N^{\text{tot}}_{\nu_e} \cdot \epsilon_{ee}$$
$$n_b = N^{\text{tot}}_{\nu_\mu} \cdot \epsilon_{\mu e}$$

For $\epsilon_{ee} \approx 0.92$ and $\epsilon_{\mu e} \approx 0.001$, a 5σ oscillation discovery requires 128 observed ν_e events

from our DNN
SUMMARY AND CONCLUSIONS

• Used a Deep Neural Network for PID in a LArTPC simulation

• Optimised the DNN by improving the architecture and tuning the hyper-parameters

• Significant <accuracy> improvement: 80% to 88.6%

• Determined the corresponding number of ν_e events required for a 5σ discovery in neutrino oscillation experiment: 128
Thank you!
LArTPC - Liquid Argon Time Projection Chamber

- High-mass detector for neutrinos
- Provides 3D tracking and dE/dx measurement
- High-density medium makes amplification unnecessary
- Used by MicroBooNE and to be used as part of the DUNE experiment

Basic concept:
1. Particle enters fiducial volume & ionizes medium
2. Primary ionization drifts in uniform electric field to readout plane
3. Readout plane stores ionization magnitude & position in 2D (xy projection)
4. Drift dimension (z) reconstructed using drift velocity and trigger time
MACHINE LEARNING ACTIVATION FUNCTIONS

Sigmoid

\[\sigma(x) = \frac{1}{1+e^{-x}} \]

Leaky ReLU

\[\text{max}(0.1x, x) \]

tanh

\[\tanh(x) \]

Maxout

\[\text{max}(w_1^T x + b_1, w_2^T x + b_2) \]

ReLU

\[\text{max}(0, x) \]

ELU

\[\begin{cases} x & x \geq 0 \\ \alpha(e^x - 1) & x < 0 \end{cases} \]
CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Residual Networks

\[
y = \mathcal{F}(x, \{W_i\}) + W_s x.
\]