The future of $\tau g - 2$

Team 15

André Günther, Taylor Kimmel, Renata Kopečná, Jannicke Pearkes, Jingyi Zhao

SLAC Summer Institute 2019

August 22, 2019

Anomalous magnetic moment of the au

Generalized
$$\tau \tau \gamma$$
 vertex:
$$\Gamma_{\tau}^{\alpha} = eF_{1}(q^{2})\gamma^{\alpha} + \frac{ie}{2m_{\tau}}F_{2}(q^{2})\sigma^{\alpha\mu}q_{\mu} + \frac{e}{2m_{\tau}}F_{3}(q^{2})\sigma^{\alpha\mu}q_{\mu}\gamma_{5} + \dots$$
F₁(0) = 1 \rightarrow electric charge
F₂(0) = $a_{\tau} \equiv \frac{g_{\tau}-2}{2} \rightarrow$ AMM
F₃(0) = $-\frac{2m_{\tau}d_{\tau}}{e_{\tau}} \rightarrow$ EDM
F₃(0) = $-\frac{2m_{\tau}d_{\tau}}{e_{\tau}} \rightarrow$ EDM
SM predictions:
 $a_{\tau}^{SM} = a_{\tau}^{QED} + a_{\tau}^{EW} + a_{\tau}^{HLO} + a_{\tau}^{HHO}$
SM predictions:
 $a_{\tau}^{SM} = 11772(5) \times 10^{-8}$
 $d_{\tau}^{SM} < 10 \times 10^{-34} \text{ e cm}$
SUSY radiative corrections $\delta a_{\tau} \propto m_{\tau}^{2}/\Lambda^{2}$

 $ightarrow \sim$ 280 times more sensitive to BSM physics than $a_{\mu}!$

Accessing the tau AMM experimentally

hard

Accessing the tau AMM experimentally

\$\tau\$ lifetime \$\sim 0.3 \not s\$ \$\to \$\text{spin}\$ precession technique not feasible
 + Colliding stuff is more fun anyway

Idea: Use photon fusion in e^+e^- collisions! Two vertices sensitive to a_{τ} $\sigma_{e^+e^- \rightarrow e^+e^-\tau^-\tau^+} \propto \log(\frac{s}{m_e^2})^2 \log(\frac{s}{m_{\tau}^2})$ Possible to probe low q^2 values

DELPHI measurement: current best limit

- LEP2 experiment running between 1997 and 2000
- $\mathcal{L} = 650 \, \text{pb}^{-1}$, $\sqrt{s} \in [183, 206] \, \text{GeV}$
- Cross-section measurement of $e^+e^- \rightarrow e^+e^- \tau^+\tau^-$
 - Looking for events with two-\(\tau\) final state

DELPHI measurement: current best limit

- Cross-section depends on a_{τ} and d_{τ}
- Average $\sigma = 429 \pm 17 \,\mathrm{pb}$

 $-0.052 < a_{ au} < 0.013$, at 95% CL

 $\rightarrow\,$ one order of magnitude away from prediction precision

 $|d_{ au}| < 3.7 imes 10^{-16} \, {
m e\, cm}$ at 95% CL

Future collider menu

Project	Туре	Energy[TeV] Integrated Lumi [ab ⁻¹]	
ILC	ee	0.25 - 4.0	2 - 4
CLIC	ee	0.38-3.0	1-5
CEPC	ee	0.091 - 0.240	16.0-5.6
FCC-ee	ee	0.091 - 0.365	150 - 1.5
FCC-he	eh	3.5	10 ⁹
LHeC	ер	60/7000	1
eRHIC	eh	0.029-0.140	10 ⁹

D. Schulte - Higgs Factories, Granada 2019

Future collider menu

Project	Туре	Energy[TeV]	Energy[TeV] Integrated Lumi [ab ⁻¹]	
ILC	ee	0.25 - 4.0	2 - 4	
CLIC	ee	0.38-3.0	1-5	
CEPC	ee	0.091 - 0.240	16.0-5.6	
FCC-ee	ee	0.091 - 0.365	150 - 1.5	
FCC-he	eh	3.5	10 ⁹	
LHeC	ер	60/7000	1	
eRHIC	eh	0.029-0.140	10 ⁹	

D. Schulte - Higgs Factories, Granada 2019

Event Simulation

- Simulated e⁺e⁻ → e⁺e⁻τ⁺τ⁻ process in FCC-ee style collider with Madgraph at centre of mass energies of 91.2 GeV, 160 GeV, 240 GeV and 365 GeV.
- Dominant contribution is our diagram
- p_T lepton > 0.5 GeV
- |η| < 5.0
- 10,000 Events per Run
- Machine parameters from: http://tlep.web.cern.ch/content/machineparameters

Event kinematics

Event kinematics (p)

Event kinematics $(\tau \tau)$

Simulation summary

Taus are produced centrally:

- Need detector with a central tracker, PID detector, calorimeter, and muon system
- τ p_T range peaks around 10 GeV with long tails
- *τ_M* =1777 MeV
- $au_{ au} = 10^{-13} \, {
 m s}$
- Decay length is around 0.5-5 mm
 - High resolution tracker for secondary vertexing

20

40

τ p [GeV]

60

80

100

Tau decays

 Many charged particles in final state

- Cherenkov detector for particle ID
- Hadronic τ decays can include π⁰
 - Highly segmented calorimeter for detecting photons from π⁰ conversions

Need a very granular calorimeter to reconstructed boosted π^0 s from τ decay

- Longitudinally segmented crystals
 - Good distinction between overlapping showers
 - $5 \times 5 \times 5 \text{ mm}^3$ crystal cubes is an ideal size
 - Thickness of 20cm

CALICE test beam

Electron Detection with Forward Electromagnetic Calorimeter

- The scattered electrons will be very energetic \rightarrow many interaction lengths needed
 - 20 cm thick ECAL + crystals with interaction length of 1 cm → almost all of the scattered energy is contained
 - $\langle E(20 \text{ cm}) \rangle = 412.23 \text{ eV}$ assuming an electron with initial energy 200 GeV
- The scattering angle of the electrons and positrons is very small
- \rightarrow A VERY forward electromagnetic calorimeter is needed
- This calorimeter can be used for coincidence tagging the electron pairs

Background suppresion

Possible backgrounds:

$$e^+e^-
ightarrow e^+e^-e^+e^-$$

$$m{e}^+m{e}^- o m{e}^+m{e}^-\mu^+\mu^-$$

- $e^+e^-
 ightarrow e^+e^-q\overline{q}$
- ⇒ Good distinction of π , *e* and μ is crucial for background suppression
 - Most commonly used PID detectors struggle to distinguish particles with high momentum
 - Cherenkov detector (RICH) filled with C₄F₁₀ allows to distinguish particles even at high p

Background suppresion

Possible backgrounds:

$$e^+e^-
ightarrow e^+e^-e^+e^-$$

$$m{e}^+m{e}^- o m{e}^+m{e}^-\mu^+\mu^-$$

- $e^+e^-
 ightarrow e^+e^-q\overline{q}$
- ⇒ Good distinction of π , *e* and μ is crucial for background suppression
 - Most commonly used PID detectors struggle to distinguish particles with high momentum
- Cherenkov detector (RICH) filled with C₄F₁₀ allows to distinguish particles even at high p

arXiv:1309.5880

Final detector design

Final detector design

Conclusion & Future Steps

- Better limit than set by DELPHI is possible
 - E.g. CLIC study arXiv:1804.02373v1
 - Two orders of magnitude improvement: $-0.00015 < a_{\tau} < 0.00017$
- Other possibility is to study heavy ion collisions (arXiv:1908.05180)
- What can be improved:
 - Calculate actual limits
 - More detailed detector design (we would start by adding muon chambers)
- What we learned:
 - Tauons are tricky but very interesting to measure
 - Madgraph is cool
 - Older detectors did impressive measurements

BACKUP

Collaboration	Experimental limit	C. L.
DELPHI	$-0.052 < a_{ au} < 0.013$	95%
L3	$-0.052 < a_{ au} < 0.058$	95%
OPAL	$-0.068 < a_{ au} < 0.065$	95%
Collaboration	Experimental limit	C. L.
BELLE	$-2.2 < Re(d_{ au}(10^{-17}ecm)) < 4.5$	95%
	$-2.5 < Im(d_{ au}(10^{-17}ecm)) < 0.8$	95%
DELPHI	$-0.22 < d_{ au}(10^{-16} ecm) < 0.45$	95%
L3	$ {\it Re}(d_{ au}(10^{-16} ecm)) < 3.1$	95%
OPAL	$ {\it Re}(d_{ au}(10^{-16} ecm)) < 3.7$	95%
ARGUS	$ Re(d_{ au}(10^{-16}ecm)) < 4.6$	95%
	$ \textit{Im}(d_{ au}(10^{-16}\textit{ecm})) < 1.8$	95%
Model	Theoretical limit	C. L.
L3 data	$a_ au \leq 0.11$	90%
Electroweak Measurements	$-0.004 < a_{ au} < 0.006$	95%
LEP1, SLC, LEP2 Data	$-0.007 < a_{ au} < 0.005$	95%
Total cross section	$a_ au < 0.023$	95%
Model	Theoretical limit	C. L.
L3 data	$d_ au \leq 6 imes 10^{-16}$ ecm	90%
Electroweak Measurements	$d_{ au} \leq 1.1 imes 10^{-17}$ ecm	95%
Cross section	$d_{ au} \leq$ 1.6 $ imes$ 10 ^{-16}ecm	90%

Event kinematics Correlations

Event kinematics (pT)

Event kinematics (p)

Event kinematics (θ)

