65 GeV Top Quark
47th SLAC Summer Institute Project

Léo Borrel1 \quad Nicolás Neill2 \quad Emma Oxford3 \quad and Christina Wang1

1California Institute of Technology, Pasadena, CA
2Universidad Técnica Federico Santa María, Valparaíso, Chile
3Carnegie Mellon University, Pittsburgh, PA

August 22, 2019
Imagine a hypothetical scenario where the top quark mass was 65 GeV while all other SM parameters are the same as they actually are.

- What observations would be affected directly or indirectly and to what extent they would differ?
- How the affected experimental programs would have adjusted their approaches?
Table of Contents

New top quark properties
 Effects on W boson
 New top quark decay modes
 Top hadrons

Effects on other processes
 Impact on Flavor Changing Neutral Current
 Impact on other processes

Discovery of the top quark
 Impact on Higgs physics
 Stability of the Electroweak vacuum
New top quark properties

- decay channel $t \rightarrow W^+ b$ no longer available
- t decay width decreases, lifetime increases - no longer decays before hadronization can occur
- top hadrons!
W boson and top quark

\[m_t = 173 \text{ GeV} \quad m_t = 65 \text{ GeV} \]
\[m_b = 4.18 \text{ GeV} \quad m_b = 4.18 \text{ GeV} \]
\[M_W = 80.4 \text{ GeV} \quad M_W = 80.4 \text{ GeV} \]
W boson and top quark

\[\frac{-g}{\sqrt{2}} (\bar{u}_L, \bar{c}_L, \bar{t}_L) \gamma^\mu W^\mu_\mu V_{CKM} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.} \]

- \(W^+ \rightarrow t\bar{b} \) would likely be the dominant decay (\(V_{tb} > V_{cs} \))
- \(W \) decay width increases, lifetime decreases
 - Using \(V_{tb} \approx 0.99 \) and \(V_{cs} \approx 0.97 \), can calculate roughly how branching ratios would change
W boson decay modes

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

W^+ decay modes

W^- modes are charge conjugates of the modes below.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_i/Γ)</th>
<th>Confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>$\ell^+ \nu$</td>
<td>[a] (10.86 ± 0.09) %</td>
</tr>
<tr>
<td>Γ_2</td>
<td>$e^+ \nu$</td>
<td>(10.71 ± 0.16) %</td>
</tr>
<tr>
<td>Γ_3</td>
<td>$\mu^+ \nu$</td>
<td>(10.63 ± 0.15) %</td>
</tr>
<tr>
<td>Γ_4</td>
<td>$\tau^+ \nu$</td>
<td>(11.38 ± 0.21) %</td>
</tr>
<tr>
<td>Γ_5</td>
<td>hadrons</td>
<td>(67.41 ± 0.27) %</td>
</tr>
<tr>
<td>Γ_6</td>
<td>$\pi^+ \gamma$</td>
<td>$< 7 \times 10^{-6}$ 95%</td>
</tr>
<tr>
<td>Γ_7</td>
<td>$D_s^+ \gamma$</td>
<td>$< 1.3 \times 10^{-3}$ 95%</td>
</tr>
<tr>
<td>Γ_8</td>
<td>cX</td>
<td>(33.3 ± 2.6) %</td>
</tr>
<tr>
<td>Γ_9</td>
<td>$c\bar{s}$</td>
<td>$(31 \pm 13 \pm 11)$ %</td>
</tr>
<tr>
<td>Γ_{10}</td>
<td>invisible</td>
<td>[b] (1.4 ± 2.9) %</td>
</tr>
</tbody>
</table>

[a] ℓ indicates each type of lepton (e, μ, and τ), not sum over them.

[b] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, $p < 200$ MeV.
New W boson decay modes

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

W^+ Decay Modes

W^- modes are charge conjugates of the modes below.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_i/Γ)</th>
<th>Confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>$\ell^+ \nu$</td>
<td>[a] (10.86 ± 0.09) %</td>
</tr>
<tr>
<td>Γ_2</td>
<td>$e^+ \nu$</td>
<td>10.71 ± 0.16 %</td>
</tr>
<tr>
<td>Γ_3</td>
<td>$\mu^+ \nu$</td>
<td>10.68 ± 0.13 %</td>
</tr>
<tr>
<td>Γ_4</td>
<td>$\tau^+ \nu$</td>
<td>11.30 ± 0.21 %</td>
</tr>
<tr>
<td>Γ_5</td>
<td>hadrons</td>
<td>(67.41 ± 0.27) %</td>
</tr>
<tr>
<td>Γ_6</td>
<td>$\pi^+ \gamma$</td>
<td>< 7 × 10^-6</td>
</tr>
<tr>
<td>Γ_7</td>
<td>$D_s^+ \gamma$</td>
<td>< 1.3 × 10^-3</td>
</tr>
<tr>
<td>Γ_8</td>
<td>cX</td>
<td>(33.3 ± 2.0) %</td>
</tr>
<tr>
<td>Γ_9</td>
<td>$c\bar{s}$</td>
<td>(31 ± 13 / -11) %</td>
</tr>
<tr>
<td>Γ_{10}</td>
<td>invisible</td>
<td>[b] (1.4 ± 2.9) %</td>
</tr>
</tbody>
</table>

[a] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, $p < 200$ MeV.

[b] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, $p < 200$ MeV.
t quark decay modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>(t \rightarrow \text{Decay Mode})</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
<th>Confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1)</td>
<td>(t \rightarrow W q (q = b, s, d))</td>
<td>((13.3 \pm 0.6) %)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(t \rightarrow W b)</td>
<td>((13.4 \pm 0.6) %)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(t \rightarrow e \nu_e b)</td>
<td>((7.1 \pm 0.6) %)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_4)</td>
<td>(t \rightarrow \mu \nu_\mu b)</td>
<td>((66.5 \pm 1.4) %)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_5)</td>
<td>(t \rightarrow \tau \nu_\tau b)</td>
<td>[a] (T1) ([b] < 5 \times 10^{-4}) (95%)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_6)</td>
<td>(t \rightarrow q \bar{q} b)</td>
<td>(0 %)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_7)</td>
<td>(t \rightarrow \gamma q (q=u,c))</td>
<td>(\Delta T = 1) weak neutral current ((T1)) modes</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_8)</td>
<td>(t \rightarrow H^+ b, \ H^+ \rightarrow \tau \nu_\tau)</td>
<td>[a] (T1) ([b] < 1.9 \times 10^{-3}) (95%)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_9)</td>
<td>(t \rightarrow Z q (q=u,c))</td>
<td>(T1) ([b] < 1.6 \times 10^{-3}) (95%)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_{10})</td>
<td>(t \rightarrow H u)</td>
<td>(T1) (< 1.9 \times 10^{-3}) (95%)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_{11})</td>
<td>(t \rightarrow H c)</td>
<td>(T1) (< 1.6 \times 10^{-3}) (95%)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_{12})</td>
<td>(t \rightarrow \ell^+ \bar{q} q' (q=d,s,b; \ q'=u,c))</td>
<td>(T1) (< 1.6 \times 10^{-3}) (95%)</td>
<td></td>
</tr>
</tbody>
</table>

[a] This limit is for \(\Gamma(t \rightarrow \gamma q)/\Gamma(t \rightarrow W b) \).

[b] This limit is for \(\Gamma(t \rightarrow Z q)/\Gamma(t \rightarrow W b) \).
New t quark decay modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\frac{\Gamma_i}{\Gamma}$</th>
<th>Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>$t \to W q (q = b, s, d)$</td>
<td>13.3 ± 0.6 %</td>
</tr>
<tr>
<td>Γ_2</td>
<td>$t \to W b$</td>
<td>13.4 ± 0.6 %</td>
</tr>
<tr>
<td>Γ_3</td>
<td>$t \to e \nu_e b$</td>
<td>7.1 ± 0.6 %</td>
</tr>
<tr>
<td>Γ_4</td>
<td>$t \to \mu \nu_\mu b$</td>
<td>66.5 ± 1.4 %</td>
</tr>
<tr>
<td>Γ_5</td>
<td>$t \to \tau \nu_\tau b$</td>
<td>$[a]$</td>
</tr>
<tr>
<td>Γ_6</td>
<td>$t \to q \bar{q} b$</td>
<td>$[a]$</td>
</tr>
<tr>
<td>Γ_7</td>
<td>$t \to \gamma q (q = u, c)$</td>
<td>$T1$ $[b] < 5 \times 10^{-4}$ 95%</td>
</tr>
<tr>
<td>Γ_8</td>
<td>$t \to H^+b, H^+\tau \to \tau \nu_\tau$</td>
<td>$T1$ $[b] < 1.9 \times 10^{-3}$ 95%</td>
</tr>
</tbody>
</table>

$\Delta T = 1$ weak neutral current ($T1$) modes

Γ_9	$t \to Z q (q = u, c)$	$T1$ $[b] < 5 \times 10^{-4}$ 95%
Γ_{10}	$t \to H u$	$T1$ $< 1.9 \times 10^{-3}$ 95%
Γ_{11}	$t \to H c$	$T1$ $< 1.6 \times 10^{-3}$ 95%
Γ_{12}	$t \to \ell^+ \bar{q} \ell' (q = d, s, b; q' = u, c)$	$T1$ $< 1.6 \times 10^{-3}$ 95%

[a] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
[b] This limit is for $\Gamma(t \to Z q)/\Gamma(t \to W b)$.
Top hadrons

- top quark would form baryons and mesons like other quarks
- we are not going to discuss about the numerous top baryons and their properties
- the top mesons would decay like other mesons:
 - lighter mesons (B, D, K, \(\pi\))
 - leptons (\(\ell + \nu_\ell\))
 - \(\gamma\)
- top mesons might oscillate - \(c\) would no longer be the only up-type quark sector where CPV could be studied
Table of T mesons

<table>
<thead>
<tr>
<th>symbol</th>
<th>quark content</th>
<th>I^G</th>
<th>J^{PC}</th>
<th>S</th>
<th>C</th>
<th>B’</th>
<th>T</th>
<th>rest mass [GeV/c^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^+</td>
<td>$\bar{t}d$</td>
<td>$\frac{1}{2}$</td>
<td>0$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>~ 65</td>
</tr>
<tr>
<td>T^-</td>
<td>$\bar{t}d$</td>
<td>$\frac{1}{2}$</td>
<td>0$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>~ 65</td>
</tr>
<tr>
<td>\bar{T}^0</td>
<td>$t\bar{u}$</td>
<td>$\frac{1}{2}$</td>
<td>0$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>~ 65</td>
</tr>
<tr>
<td>\bar{T}^0</td>
<td>$\bar{t}u$</td>
<td>$\frac{1}{2}$</td>
<td>0$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>~ 65</td>
</tr>
<tr>
<td>T^+_s</td>
<td>$t\bar{s}$</td>
<td>0</td>
<td>0$^-$</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>~ 65</td>
</tr>
<tr>
<td>T^-_s</td>
<td>$\bar{t}s$</td>
<td>0</td>
<td>0$^-$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>~ 65</td>
</tr>
<tr>
<td>\bar{T}^0_c</td>
<td>$t\bar{c}$</td>
<td>0</td>
<td>0$^-$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>~ 66</td>
</tr>
<tr>
<td>\bar{T}^0_c</td>
<td>$\bar{t}c$</td>
<td>0</td>
<td>0$^-$</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
<td>~ 66</td>
</tr>
<tr>
<td>T^+_b</td>
<td>$t\bar{b}$</td>
<td>0</td>
<td>0$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>~ 69</td>
</tr>
<tr>
<td>T^-_b</td>
<td>$\bar{t}b$</td>
<td>0</td>
<td>0$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>~ 69</td>
</tr>
<tr>
<td>θ</td>
<td>$t\bar{t}$</td>
<td>0^+</td>
<td>0$^{--}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>~ 130</td>
</tr>
</tbody>
</table>
Flavor Changing Neutral Current (FCNC)

- Flavor Changing Neutral Current (FCNC) are sensitive to top quark
- both box diagram (mixing) and penguin diagram (decay) are affected
- GIM suppression amplified because top quark mass closer to other quarks masses

[Image credit: Ulrich Nierste, SSI 2019 lecture]
B meson mixing

Example: Mass difference between B^0 and \bar{B}^0:

$$\Delta m_B = 2 \frac{G_F^2 m_W^2 \eta_B m_B B_B f_B^2}{12 \pi^2} S_0 \left(\frac{m_t^2}{m_W^2} \right) (V_{td}^* V_{tb})$$

where $S_0(x_t) \approx 0.784 x_t^{0.76}$

Current value: $\Delta m_B = 0.5064 \pm 0.0019 \text{ ps}^{-1}$

New value: $\Delta m_B \approx 0.114 \text{ ps}^{-1}$

Impact on other processes

- top loop contribution to muon $g-2$
- Mixing and decay of Kaons, similar to B mesons
- multiple other processes involving top quark loops (usually neglected)
Discovery of the top quark

- 1973: t quark first postulated in famous Kobayashi and Maskawa paper
- 1977: b quark discovered
- 1983: W and Z bosons discovered
- 1991: Discovery of 65 GeV t quark at CDF
- 2012: Higgs boson discovered
- 1995: t quark discovered at 173 GeV
- ?: Higgs boson discovered
top production at the Tevatron

- Two production mode of the top at the Tevatron:

![Diagram showing top quark production](image credit: CDF Collaboration (1991))

FIG. 1. Cross section for top-quark production in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV. The solid curve is for tt pair production and the dashed curve is for $W \rightarrow t\bar{b}$. The two curves for the tt pair-production cross section represent the upper and lower bounds on the theoretical calculation as estimated in Ref. 7.

[Image credit: CDF Collaboration (1991)]
Discovery of the top at CDF

- By 1991, CDF took 4.4 pb$^{-1}$ of data at $\sqrt{s} = 1.8$ TeV. Using this data, top mass from 40 - 77 GeV was excluded.
- Estimated significance for 65 GeV top:
 \[\sigma = \frac{s}{\sqrt{s+b}} \sim \frac{55}{\sqrt{55+65}} \sim 5.02 \Rightarrow \text{DISCOVERY!} \]

Impact on Higgs physics

- Top Yukawa coupling:
 - $\lambda_t = \sqrt{2}m_t/v$
 - with $m_t = 173$ GeV,
 $\sigma_{ggH} = 48.6$ pb$^{-1}$
 - with $m_t = 65$ GeV,
 $\sigma_{ggH(65\text{GeV})} \approx 1.8\sigma_{ggH(173\text{GeV})} \approx 90$ pb$^{-1}$

- With smaller m_t, Higgs would likely be discovered slightly earlier than 2012

- $\sigma(ttH)_{65} \approx 1.4\sigma(ttH)_{173}$, but now t decays differently, so probably this observation would be delayed
Last but not least...

Meta-stability of the EW vacuum

[diagram showing the stability and meta-stability regions in terms of Higgs mass M_h in GeV and top mass M_t in GeV]

[image credit: 1512.01222]
Last but not least...

A 65 GeV top would make the universe a safer place!

[Image credit: 1512.01222]
Thank you!
W boson and t quark

$$\frac{\Gamma_{cs}}{\Gamma_{old}} = 0.31$$

$$\Gamma_{new} = \Gamma_{old} + \Gamma_{tb}$$

$$\frac{\Gamma_{new}}{\Gamma_{old}} = 1 + \frac{\Gamma_{tb}}{\Gamma_{old}}$$

$$\frac{\Gamma_{tb}}{\Gamma_{old}} = \frac{\Gamma_{cs} |V_{tb}|^2}{\Gamma_{old} |V_{cs}|^2}$$

$$\Rightarrow \frac{\Gamma_{new}}{\Gamma_{old}} = 1.32$$