CPV and Leptogenesis

1. mixing matrix phases + leptonic unitarity triangle

2. leptogenesis in the type 1 seesaw
leptonic mixing matrix (lives in generation space; rotates from charged lepton α to neutrino i) with three angles (index order reversed wrt quarks):

$$U_{\alpha i} = \begin{bmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{bmatrix}
\begin{bmatrix}
c_{13} & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{bmatrix}
\begin{bmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{bmatrix}P$$

$$= \begin{bmatrix}
c_{12}c_{13} & c_{13}s_{12} & s_{13}e^{-i\delta} \\
-c_{23}s_{12} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\
s_{23}s_{12} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - c_{23}s_{12}s_{13}e^{i\delta} & c_{13}c_{23}
\end{bmatrix}P$$

$$P = \text{diag}\{e^{-i\phi_1/2}, e^{-i\phi_2/2}, 1\}$$ for Majorana, identity for Dirac
leptonic mixing matrix (lives in generation space; rotates from charged lepton α to neutrino i) with three angles (index order reversed wrt quarks):

\[
U_{\alpha i} = \begin{bmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{bmatrix}
\begin{bmatrix}
c_{13} & s_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13} e^{i\delta} & 0 & c_{13}
\end{bmatrix}
\begin{bmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{bmatrix} P
\]

\[
P = \text{diag}\{e^{-i\phi_1/2}, e^{-i\phi_2/2}, 1\} \text{ for Majorana, identity for Dirac}
\]

\[
\theta_{23} \simeq \pi/4 \quad \theta_{12} \simeq \pi/6 \quad \theta_{13} \simeq 0.15, 8^\circ \quad \delta \sim 1.4\pi
\]

(global fits of www.nu-fit.org)

for comparison, in CKM:

\[
\theta_{23} \simeq V_{cb} \simeq 0.04 \quad \theta_{12} \simeq V_{us} \simeq 0.225 \quad \theta_{13} \simeq V_{ub} \simeq 0.004
\]
The drunken Unitarity triangle

Not hear much about “leptonic unitarity triangle”
1. not measure elements at tree in CC
2. Also, it drinks.
Not much about “leptonic unitarity triangle”
1. not measure elements at tree in CC
2. Also, it drinks.

Amplitude to oscillate from flavour α to β over distance L:

$$A_{\alpha\beta}(L) = U_{\alpha 1} U_{\beta 1}^* + U_{\alpha 2} U_{\beta 2}^* e^{-i(m_2^2 - m_1^2)L/(2E)} + U_{\alpha 3} U_{\beta 3}^* e^{-i(m_3^2 - m_1^2)L/(2E)}$$
The drunken Unitarity triangle

Not hear much about “leptonic unitarity triangle”
1. not measure elements at tree in CC
2. Also, it drinks.
Amplitude to oscillate from flavour α to β over distance L:

$$A_{\alpha\beta}(L) = U_{\alpha 1} U_{\beta 1}^* + U_{\alpha 2} U_{\beta 2}^* e^{-i(m_2^2 - m_1^2)L/(2E)} + U_{\alpha 3} U_{\beta 3}^* e^{-i(m_3^2 - m_1^2)L/(2E)}$$

at $L = 0$ unitarity : $\Rightarrow A_{\alpha\beta} = 1$ for $\alpha = \beta$
$A_{\alpha\beta} = 0$ for $\alpha \neq \beta$

\iff unitarity triangle (in complex plane)
The drunken Unitarity triangle

Not hear much about “leptonic unitarity triangle”
1. not measure elements at tree in CC
2. Also, it drinks.
Amplitude to oscillate from flavour α to β over distance L:

$$A_{\alpha\beta}(L) = U_{\alpha 1} U_{\beta 1}^* + U_{\alpha 2} U_{\beta 2}^* e^{-i(m_2^2 - m_1^2)L/(2E)} + U_{\alpha 3} U_{\beta 3}^* e^{-i(m_3^2 - m_1^2)L/(2E)}$$

at $L = 0$ unitarity : $\Rightarrow A_{\alpha\beta} = 1$ for $\alpha = \beta$
$A_{\alpha\beta} = 0$ for $\alpha \neq \beta$

\Leftrightarrow unitarity triangle(in complex plane)

At $L = t \neq 0$, two of the vectors rotate in the complex plane, with frequencies
$$(m_j^2 - m_1^2)/2E$$
oscillations \Leftrightarrow time-dependent non-unitarity
“drunken unitarity” \Rightarrow intuition when can use 2-flavour approx
About two-flavour analyses: atm/LBL ν_μ disappearance

Amplitude to oscillate from flavour μ to τ over distance L:

$$A_{\mu\tau}(L) = U_{\mu 1} U_{\tau 1}^* + U_{\mu 2} U_{\tau 2}^* e^{-i(m_2^2 - m_1^2)L/(2E)} + U_{\mu 3} U_{\tau 3}^* e^{-i(m_3^2 - m_1^2)L/(2E)}$$
About two-flavour analyses: atm/LBL ν_μ disappearance

Amplitude to oscillate from flavour μ to τ over distance L:

$$A_{\mu\tau}(L) = U_{\mu 1} U_{\tau 1}^* + U_{\mu 2} U_{\tau 2}^* e^{-i(m_2^2 - m_1^2) L / (2E)} + U_{\mu 3} U_{\tau 3}^* e^{-i(m_3^2 - m_1^2) L / (2E)}$$

At $L \sim (m_3^2 - m_1^2)/E$, vector “3” rotates, at frequency $(m_3^2 - m_1^2)/2E$
About two-flavour analyses: atm/LBL ν_μ disappearance

Amplitude to oscillate from flavour μ to τ over distance L:

$$A_{\mu\tau}(L) = U_{\mu 1} U^*_{\tau 1} + U_{\mu 2} U^*_{\tau 2} e^{-i(m_2^2-m_1^2) L/(2E)} + U_{\mu 3} U^*_{\tau 3} e^{-i(m_3^2-m_1^2) L/(2E)}$$

At $L \sim (m_3^2 - m_1^2)/E$, vector “3” rotates, at frequency $(m_3^2 - m_1^2)/2E$.

\Rightarrow “Atmospheric” neutrinos, also LBL (ν_μ disappearance via Δm^2_{31} oscillations):

$$A_{\mu\tau}(L) \sim U_{\mu 1} U^*_{\tau 1} + U_{\mu 2} U^*_{\tau 2} + U_{\mu 3} U^*_{\tau 3} e^{-i(m_3^2-m_1^2) L/(2E)}$$

$U_{\mu 3} U^*_{\tau 3}$ oscillates on timescale $t = L \sim (m_3^2 - m_1^2)/E$.
$U_{\mu 2} U^*_{\tau 2}$ \sim stationary, measure θ_{23}.
Three flavour probability required for CPV \propto triangle area

$$
\mathcal{P}_{\alpha\beta}(L) = \delta_{\alpha\beta} - 4 \sum_{i<j} \text{Re}\{U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j}\} \sin^2 \frac{x_{ji}}{2} + 2 \sum_{i<j} \text{Im}\{U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j}\} \sin x_{ji}
$$

Last term violates CP \Leftrightarrow opposite sign for $\nu_\alpha \rightarrow \nu_\beta$.
(Also matter effect opposite sign for $\bar{\nu}$).

\propto area of triangle $\propto \tilde{J} = 8 c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$:

Suppose triangle base $\in \text{Re} = U_{\mu 1} U_{\tau 1}^*$. Then base*height $\propto \text{Im}\{U_{\mu 1} U_{\tau 1}^* U_{\mu j}^* U_{\tau j}\}$

$\propto \tilde{J} \sin \delta$
Leptogenesis

a class of recipes, that use (majorana) neutrino mass models to generate the matter excess

► what matter excess?
► required ingredients?
► a simple seesaw model
► how it works...
Preambule

1. about “What the stars (and us) are made of” (5% of U)
 \[\approx H \approx \text{baryons} \]
1. about “What the stars (and us) are made of” (5% of U)
 \[\approx H \approx \text{baryons} \]

 not worry about lepton asymmetry : is (undetected) Cosmic Neutrino Background ...so how to measure asym ???
1. about “What the stars (and us) are made of” (5% of U)
\[\approx H \approx \text{baryons} \]
not worry about lepton asymmetry : is (undetected) Cosmic Neutrino Background ...so how to measure asym???

2. I am made of baryons(defn) ... observation... all matter we see is made of baryons (not anti-baryons)

3. quantify as \((s_0 \approx 7n_{\gamma,0})\)

\[
Y_B \equiv \left. \frac{n_B - n_{\bar{B}}}{s} \right|_0 = 3.86 \times 10^{-9} \Omega_B h^2 \approx (8.53 \pm 0.11) \times 10^{-11}
\]

PLANCK
1. about “What the stars (and us) are made of” (5% of U)
 \[\approx H \approx \text{baryons} \]
 not worry about lepton asymmetry : is (undetected) Cosmic Neutrino Background ...so how to measure asym???

2. I am made of baryons(defn) ... observation... all matter we see is made of baryons (not anti-baryons)

3. quantify as \((s_0 \approx 7n_\gamma,0) \)

\[
Y_B \equiv \left. \frac{n_B - n_{\bar{B}}}{s} \right|_0 = 3.86 \times 10^{-9} \Omega_B h^2 \approx (8.53 \pm 0.11) \times 10^{-11}
\]

PLANCK

⇒ Question : where did that excess come from?
Where did the matter excess come from?

1. the U(niverse) is matter-anti-matter symmetric?
 = islands of particles and anti-particles
 ✗ no! not see γs from annihilation
Where did the matter excess come from?

1. the U(niverse) is matter-anti-matter symmetric?
 \[\equiv \text{islands of particles and anti-particles} \]
 \[\times \text{no! not see } \gamma \text{s from annihilation} \]

2. U was born that way...
 \[\times \text{no! After birth of U, there was “inflation”} \]
 \[\text{▷ (only theory explaining coherent temperature fluctuations in microwave background that arrive from causally disconnected regions today...)} \]
 \[\text{▷ “60 e-folds” inflation } \equiv V_U \rightarrow 10^{90} V_U \]

\[(n_B - \overline{n}_B) \rightarrow 10^{-90} (n_B - \overline{n}_B), \text{ s from } \rho \text{ of inflation...} \]
Where did the matter excess come from?

1. the U(niverse) is matter-anti-matter symmetric?
 \(\equiv\) islands of particles and anti-particles
 \(\times\) no! not see \(\gamma\)s from annihilation

2. U was born that way...
 \(\times\) no! After birth of U, there was “inflation”
 - (only theory explaining coherent temperature fluctuations in microwave background that arrive from causally disconnected regions today...)
 - “60 e-folds” inflation \(\equiv V_U \rightarrow 10^{90} V_U\)
 \[(n_B - n_B) \rightarrow 10^{-90}(n_B - n_B), \text{ s from } \rho \text{ of inflation...} \]

3. created/generated/cooked after inflation...
Three ingredients to prepare in the early U (old russian recipe)

1. B violation: if Universe starts in state of $n_B - n_{\bar{B}} = 0$, need \mathcal{B} to evolve to $n_B - n_{\bar{B}} \neq 0$
Three ingredients to prepare in the early Universe (old Russian recipe)

1. B violation: if Universe starts in state of $n_B - n_{\bar{B}} = 0$, need B to evolve to $n_B - n_{\bar{B}} \neq 0$

2. C and CP violation: ...particles need to behave differently from anti-particles.
 Present in the SM quarks, observed in Kaons and Bs, searched for in leptons (...T2K,future expts)
Three ingredients to prepare in the early Universe (old Russian recipe)

1. B violation: if Universe starts in state of $n_B - n_{\bar{B}} = 0$, need \mathcal{B} to evolve to $n_B - n_{\bar{B}} \neq 0$

2. C and CP violation: ...particles need to behave differently from anti-particles. Present in the SM quarks, observed in Kaons and Bs, searched for in leptons (T2K, future expts)

3. out-of-thermal-equilibrium ...equilibrium = static. “generation” = dynamical process
No asym.s in un-conserved quantum #s in equilibrium
Three ingredients to prepare in the early U (old Russian recipe)

1. **B violation**: if Universe starts in state of \(n_B - n_{\bar{B}} = 0 \), need to evolve to \(n_B - n_{\bar{B}} \neq 0 \).

2. **C and CP violation**: particles need to behave differently from anti-particles. Present in the SM quarks, observed in Kaons and Bs, searched for in leptons (...T2K, future expts).

3. **Out-of-thermal-equilibrium**: equilibrium = static. “generation” = dynamical process. No asym.s in un-conserved quantum #s in equilibrium. From end inflation \(\rightarrow \) BBN, Universe is an expanding, cooling thermal bath, so non-equilibrium from:
 - slow interactions: \(\tau_{int} \gg \tau_U = \text{age of Universe} \) (\(\Gamma_{int} \ll H \))
 - phase transitions:
ingredient 1: Does the SM conserve B?

B, L are global symmetries of the SM Lagrangian (q, ℓ doublets, e, u, d singlets)

$$\mathcal{L}_{SM} \supset \bar{q} D q, \bar{\ell} D \ell, \bar{\ell} H e, \bar{q} \tilde{H} u, \bar{q} H d$$

so, classically, there are conserved currents, and B and L are conserved. (So $B + L$ and $B - L$ are conserved.)
ingredient 1: Does the SM conserve B?

B, L are global symmetries of the SM Lagrangian (q, ℓ doublets, e, u, d singlets)

$$\mathcal{L}_{SM} \supset \bar{q}Dq, \bar{\ell}D\ell, \bar{\ell}He, \bar{q}\tilde{H}u, \bar{q}Hd$$

so, classically, there are conserved currents, and B and L are conserved. (So $B + L$ and $B - L$ are conserved.)

Good—proton appears stable: $\tau_p \gtrsim 10^{33}$ yrs ($\tau_U \sim 10^{10}$ yrs).
ingredient 1: Does the SM conserve B?

B, L are global symmetries of the SM Lagrangian (q, ℓ doublets, e, u, d singlets)

$$\mathcal{L}_{SM} \ni \bar{q} \not{\partial} q, \bar{\ell} \not{\partial} \ell, \bar{\ell} H e, \bar{q} \tilde{H} u, \bar{q} H d$$

so, classically, there are conserved currents, and B and L are conserved. (So $B + L$ and $B - L$ are conserved.)

Good—proton appears stable: $\tau_p \gtrsim 10^{33}$ yrs ($\tau_U \sim 10^{10}$ yrs).

But the SM does not conserve $B + L$...

In QFT, there is the axial anomaly...

...anomalously, the fermion current associated to a classical symmetry is not conserved.

see Polyakov, “Gauge Fields + Strings,” 6.3=qualitative effects of instantons
ingredient 1: the SM does not conserve $B + L$

$B + L$ is anomalous. Formally, for one generation (α colour):

$$\sum_{SU(2)\text{ singlets}} \partial^\mu (\bar{\psi} \gamma_\mu \psi) + \partial^\mu (\bar{\ell} \gamma_\mu \ell) + \partial^\mu (\bar{q}^\alpha \gamma_\mu q_\alpha) \propto \frac{1}{64\pi^2} W^A_{\mu\nu} \tilde{W}^{\mu\nu A}.$$

where integrating the RHS over space-time counts “winding number” of the SU(2) gauge field configuration.

⇒ Field configurations of non-zero winding number are sources of a doublet lepton and three (for colour) doublet quarks for each generation.
ingredient 1: the SM does not conserve $B + L$

$B + L$ is anomalous. Formally, for one generation (α colour):

$$
\sum_{SU(2)\text{ singlets}} \partial^\mu (\bar{\psi} \gamma_\mu \psi) + \partial^\mu (\bar{\ell} \gamma_\mu \ell) + \partial^\mu (\bar{q}^\alpha \gamma_\mu q_\alpha) \propto \frac{1}{64\pi^2} W^A_{\mu\nu} \tilde{W}^{\mu\nu A}.
$$

where integrating the RHS over space-time counts “winding number” of the SU(2) gauge field configuration.

⇒ Field configurations of non-zero winding number are sources of a doublet lepton and three (for colour) doublet quarks for each generation.

thanks to V Rubakov
SM B+L violation: rates

At $T = 0$ is tunneling process (from winding # to next, “instanton”): $\Gamma \propto e^{-8\pi/g^2}$

At $0 < T < m_W$, can climb over the barrier: $\Gamma_{B+L} \sim e^{-m_W/T}$
\hspace{1in} $T < m_W$
\hspace{1in} $T > m_W$

\Rightarrow fast SM B+L at $T > m_W$

$\Gamma_{B+L} > H$ for $m_W < T < 10^{12}$ GeV

SM B+L called “sphalerons”

\Rightarrow if produce a lepton asym, “sphalerons” partially transform to a baryon asym. !!

$\star \star \star$ SM B+L is $\Delta B = \Delta L = 3 \ (= N_f)$. No proton decay! $\star \star \star$
Summary of preliminaries: A Baryon excess today:

- Want to make a baryon excess $\equiv Y_B$ after inflation, that corresponds today to ~ 1 baryon per 10^{10} γs.
- Three required ingredients: B, CP, TE.
 Present in SM, but hard to combine to give big enough asym Y_B

 Cold EW baryogen? Tranberg et al ...

 \Rightarrow evidence for physics Beyond the Standard Model (BSM)
Summary of preliminaries: A Baryon excess today:

• Want to make a baryon excess $\equiv Y_B$ after inflation, that corresponds today to ~ 1 baryon per 10^{10} γs.
• Three required ingredients: B, CP, TE. Present in SM, but hard to combine to give big enough asym Y_B

Cold EW baryogen?? Tranberg et al

\Rightarrow evidence for physics Beyond the Standard Model (BSM)

One observation to fit, many new parameters...

\Rightarrow prefer BSM motivated by other data $\Leftrightarrow m_\nu \Leftrightarrow$ seesaw! (uses non-pert. SM $B\!L$)
• add 3 singlet N to the SM in charged lepton and N mass bases, at scale $> M_i$:

$$\mathcal{L} = \mathcal{L}_{SM} + \lambda_{\alpha J} \overline{N}_J \ell_\alpha \cdot \phi - \frac{1}{2} \overline{N}_J M_J N_J^c$$

M_i unknown ($\phi v = \langle \phi^0 \rangle$), and Majorana ($\mathcal{V}$). \mathcal{CP} in $\lambda_{\alpha J} \in \mathcal{C}$.

add 18 parameters: M_1, M_2, M_3

$18 - 3 (\ell$ phases) in λ
The type I seesaw

- add 3 singlet N to the SM in charged lepton and N mass bases, at scale $> M_i$:

$$\mathcal{L} = \mathcal{L}_{SM} + \lambda_{\alpha J} \bar{N}_J \ell_\alpha \cdot \phi - \frac{1}{2} \bar{N}_J M_J N_J^c$$

M_i unknown ($\phi \nu = \langle \phi^0 \rangle$), and Majorana ($\nu^\dagger \nu$). \mathcal{CP} in $\lambda_{\alpha J} \in \mathbb{C}$.

- at low scale, for $M \gg m_D = \lambda \nu$, light ν mass matrix

\[m_{\nu} = \lambda M^{-1} \lambda^T \nu^2 \]

for $\lambda \sim h_t$, $M \sim 10^{15}$ GeV

$\lambda \sim 10^{-7}$, $M \sim 10$ GeV $\sim .05$ eV

“natural” $m_{\nu} \ll m_f$: $m_{\nu} \propto \lambda^2$, and $M > \nu$ allowed.

\[m_{\nu} = \lambda M^{-1} \lambda^T \nu^2 \]
The type I seesaw

- add 3 singlet N to the SM in charged lepton and N mass bases, at scale $> M_i$:

$$\mathcal{L} = \mathcal{L}_{SM} + \lambda_{\alpha J} \overline{N}_J \ell_{\alpha} \cdot \phi - \frac{1}{2} \overline{N}_J M_J N^c_J$$

M_i unknown ($\phi v = \langle \phi^0 \rangle$), and Majorana ($\nu$). \mathbb{CP} in $\lambda_{\alpha J} \in \mathbb{C}$.

- at low scale, Higgs mass contribution

$$\delta m_{\phi}^2 \approx - \sum_{l} [\lambda^\dagger \lambda]_{ll} M_i^2 \sim \frac{m_{\nu} M_i^3}{8\pi^2 v^4} v^2$$

for $M \gtrsim 10^7$ GeV $> v^2$ tuning problem

(? adding particles to cancel 1 loop...but higher loop? Need symmetry to cancel ≥ 2 loop?)

\Rightarrow do seesaw with $M_i \lesssim 10^8$ GeV?

(NB, in this talk, $\phi = $ Higgs, $H =$ Hubble)
Leptogenesis in the type 1 seesaw: usually a Fairy Tale

Once upon a time, a Universe was born.
Leptogenesis in the type 1 seesaw: usually a Fairy Tale

Once upon a time, a Universe was born.
Leptogenesis in the type 1 seesaw: usually a Fairy Tale

Once upon a time, a Universe was born.
At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile N_j with \mathcal{L} masses and $\mathcal{C}\mathcal{P}$ interactions) to the Universe.
Leptogenesis in the type 1 seesaw: usually a Fairy Tale

Once upon a time, a Universe was born. At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile N_j with \mathcal{L} masses and \mathcal{CP} interactions) to the Universe. The adventure begins after inflationary expansion of the Universe:

1. Assuming it's hot enough, a population of Ns appear—they like the heat.

2. As the temperature drops below M, the N population decays away.

3. In the $\mathcal{CP}, \mathcal{L}$ interactions of the N, an asym. in SM leptons is created.
Leptogenesis in the type 1 seesaw: usually a Fairy Tale

If this asymmetry can escape the big bad wolf of thermal equilibrium...
Leptogenesis in the type 1 seesaw: usually a Fairy Tale

Once upon a time, a Universe was born.
At the christening of the Universe, the fairies give the Standard Model and the Seesaw (heavy sterile N_j with L masses and \mathcal{CP} interactions) to the Universe.
The adventure begins after inflationary expansion of the Universe:

1. Assuming its hot enough, a population of Ns appear—they like the heat.
2. As the temperature drops below M, the N population decays away.
3. In the \mathcal{CP}, L interactions of the N, an asym. in SM leptons is created.
4. If this asymmetry can escape the big bad wolf of thermal equilibrium...
5. the lepton asym gets partially reprocessed to a baryon asym by non-perturbative $B + L$ -violating SM processes (“sphalerons”)

And the Universe lived happily ever after, containing many photons. And for every 10^{10} photons, there were 6 extra baryons (wrt anti-baryons).
Estimate something: TE + dynamics

Suppose $M_1 \ll M_{2,3}, \ T_{\text{reheat}} > M_1 \sim 10^9\text{GeV}$

Recipe: calculate suppression factor for each Sakharov condition, multiply together to get Y_B:

$$
\frac{n_B - n_{\bar{B}}}{s} \sim \frac{1}{3g_*} \epsilon L, CP \eta_{TE} \sim 10^{-3} \epsilon \eta \quad \text{(want } 10^{-10})
$$

$s \sim g_\ast n_\gamma$, $\epsilon = \text{lepton asym in decay}, \ \eta \sim \text{TE process}$
Estimate something: $\mathcal{T} \Phi + \text{dynamics}$

Suppose $M_1 \ll M_{2,3}$, $T_{\text{reheat}} > M_1 \sim 10^9 \text{GeV}$

1 produce a population of N_1s, via e.g. $(q\ell_\alpha \rightarrow Nt_R)$

Get thermal density $n_N \simeq n_\gamma$ if $M_1 \lesssim T$, and $\tau_{\text{prod}} < \tau_U$:
Estimate something: $\mathcal{E} + \text{dynamics}$

Suppose $M_1 \ll M_{2,3}$, $T_{\text{reheat}} > M_1 \sim 10^9\text{GeV}$

1 produce a population of N_1s, via e.g. $(q\ell_\alpha \to Nt_R)$

Get thermal density $n_N \simeq n_\gamma$ if $M_1 \lesssim T$, and $\tau_{\text{prod}} < \tau_U$:

$$\Gamma_{\text{prod}} \sim \sigma v n \sim \frac{h^2 \lambda^2}{T^2} \frac{T^3}{\pi^2} \sim \frac{h^2 \lambda^2}{\pi^2} T > H \simeq \frac{10 T^2}{m_{\text{pl}}}, \quad \Rightarrow \quad \frac{\lambda^2}{\pi^2} > \frac{10 T}{m_{\text{pl}}} \bigg|_{T=M_1}$$

Suppose satisfied...
Estimate something: \(T E + \) dynamics

Suppose \(M_1 \ll M_{2,3}, T_{\text{reheat}} > M_1 \sim 10^9 \text{GeV} \)

1 produce a population of \(N_1 \)s, via e.g. \((q_\ell \alpha \rightarrow N t_R)\)
Get thermal density \(n_N \simeq n_\gamma \) if \(M_1 \lesssim T \), and \(\tau_{\text{prod}} < \tau_U \):

\[
\Gamma_{\text{prod}} \sim \sigma v n \sim \frac{h_t^2 \lambda^2}{T^2} \frac{T^3}{\pi^2} \sim \frac{h_t^2 \lambda^2}{\pi^2} T > H \simeq \frac{10 T^2}{m_{pl}}, \quad \Rightarrow \quad \frac{\lambda^2}{\pi^2} > \frac{10 T}{m_{pl}} \bigg|_{T=M_1}
\]

Suppose satisfied...

2 Lepton asym is produced in \(N \) int. (eg decays) if there is \(CP \); can survive after inverse processes (eg decays) = “washout” become rare enough

\[
\Gamma_{ID}(\phi \ell \rightarrow N) \sim \Gamma_{\text{decay}} e^{-M_1/T} = \left[\lambda \lambda^\dagger \right]_{11} M_1 \frac{1}{8\pi} e^{-M_1/T} < \frac{10 T^2}{m_{pl}}
\]
Estimate something: $\mathbb{T}E + \text{dynamics}$

Suppose $M_1 \ll M_{2,3}$, $T_{\text{reheat}} > M_1 \sim 10^9 \text{GeV}$

1 produce a population of N_1s, via e.g. $(q\ell_\alpha \rightarrow N t_R)$

Get thermal density $n_N \simeq n_\gamma$ if $M_1 \lesssim T$, and $\tau_{\text{prod}} < \tau_U$:

$$\Gamma_{\text{prod}} \sim \sigma v n \sim \frac{h_t^2 \lambda^2}{T^2} \frac{T^3}{\pi^2} \sim \frac{h_t^2 \lambda^2}{\pi^2} T > H \simeq \frac{10 T^2}{m_{pl}}, \quad \Rightarrow \quad \frac{\lambda^2}{\pi^2} > \left. \frac{10 T}{m_{pl}} \right|_{T=M_1}$$

Suppose satisfied...

2 Lepton asym is produced in N int. (eg decays) if there is $\mathbb{C}\mathbb{P}$; can survive after inverse processes (eg decays) = “washout” become rare enough

$$\Gamma_{ID}(\phi\ell \rightarrow N) \simeq \Gamma_{\text{decay}} e^{-M_1/T} = \frac{[\lambda \lambda^\dagger]_{11} M_1}{8\pi} e^{-M_1/T} < \frac{10 T^2}{m_{pl}}$$

At temperature T_α when Inverse Decays turn off,

$$\frac{n_N}{n_\gamma}(T_\alpha) \simeq e^{-M_1/T_\alpha} \simeq \frac{H}{\Gamma(N \rightarrow \ell_\alpha \phi)}$$

can calculate this
Estimate something: $\mathbb{T}E + \text{dynamics}$

Suppose $M_1 \ll M_{2,3}, T_{\text{reheat}} > M_1 \sim 10^9 \text{GeV}$

1. produce a population of N_1s, via e.g. $(q\ell_\alpha \rightarrow Nt_R)$

Get thermal density $n_N \simeq n_\gamma$ if $M_1 \lesssim T$, and $\tau_{\text{prod}} < \tau_U$:

$$\Gamma_{\text{prod}} \sim \sigma v n \sim \frac{h_t^2 \lambda^2}{T^2} \frac{T^3}{\pi^2} \sim \frac{h_t^2 \lambda^2}{\pi^2} T > H \simeq \frac{10 T^2}{m_{\text{pl}}}, \quad \Rightarrow \frac{\lambda^2}{\pi^2} > \left. \frac{10 T}{m_{\text{pl}}} \right|_{T=M_1}$$

Suppose satisfied...

2. Lepton asym is produced in N int. (eg decays) if there is CP; can survive after inverse processes (eg decays) = “washout” become rare enough

$$\Gamma_{\text{ID}}(\phi \ell \rightarrow N) \simeq \Gamma_{\text{decay}} e^{-M_1/T} = \left[\frac{\lambda \lambda^\dagger}{8\pi} \right]_{11} \frac{M_1}{H} e^{-M_1/T} < \frac{10 T^2}{m_{\text{pl}}}$$

At temperature T_α when Inverse Decays turn off,

$$\frac{n_N}{n_\gamma}(T_\alpha) \simeq e^{-M_1/T_\alpha} \simeq \frac{H}{\Gamma(N \rightarrow \ell_\alpha \phi)}$$

can calculate this

so (1/3 is from SM $B+\bar{L}$, $s \sim g_\ast n_\gamma$, ϵ_α is lepton asym in decay)

$$\frac{n_B - n_{\bar{B}}}{s} \sim \frac{1}{3} \sum_\alpha \epsilon_\alpha \frac{n_N(T_\alpha)}{g_\ast n_\gamma} \sim 10^{-3} \epsilon \frac{H}{\Gamma}$$
(want 10^{-10})
Estimate ϵ, the CP and L asymmetry in decays

Recall (in S-matrix) \(CP : \langle \phi \ell | S | N \rangle \rightarrow \langle \phi \bar{\ell} | S | \bar{N} \rangle = \langle \phi \ell | S | N \rangle \), (\(\bar{\eta} \) = anti-η)
Estimate ϵ, the CP and L asymmetry in decays

Recall (in S-matrix) CP:

$$\langle \phi \ell | S | N \rangle \rightarrow \langle \phi \ell | S | \bar{N} \rangle = \langle \phi \ell | S | N \rangle, \ (\bar{\eta} = \text{anti-}\eta)$$

In leptogenesis, need \mathcal{CP}, \mathcal{L} interactions of N_i...for instance:

finite temp : Beneke et al 10

\[
\begin{align*}
\epsilon_l^\alpha &= \frac{\Gamma(N_i \rightarrow \phi \ell_\alpha) - \Gamma(\bar{N}_i \rightarrow \phi \bar{\ell}_\alpha)}{\Gamma(N_i \rightarrow \phi \ell) + \Gamma(\bar{N}_i \rightarrow \phi \bar{\ell})} \quad \text{(recall } N_i = \bar{N}_i) \\
&\sim \text{fraction } N \text{ decays producing excess lepton}
\end{align*}
\]
Estimate ϵ, the CP and L asymmetry in decays

Recall (in S-matrix) $CP : \langle \phi \ell | S | N \rangle \rightarrow \langle \bar{\phi} \ell | S | \bar{N} \rangle = \langle \bar{\phi} \ell | S | N \rangle$, ($\bar{\eta} =$anti-$\eta$)

In leptogenesis, need CP , \mathcal{L} interactions of N_i...for instance:

\[\epsilon_l^\alpha = \frac{\Gamma(N_i \rightarrow \phi \ell_\alpha) - \Gamma(\bar{N}_i \rightarrow \bar{\phi} \ell_\alpha)}{\Gamma(N_i \rightarrow \phi \ell) + \Gamma(\bar{N}_i \rightarrow \bar{\phi} \ell)} \]
(recall $N_i = \bar{N}_i$)

\[\sim \text{ fraction } N \text{ decays producing excess lepton} \]

\[
\begin{align*}
N_i & \quad \times \quad \phi \\
\times \quad \lambda & \quad \times \quad \ell_\alpha
\end{align*}
\]

Just try to calculate ϵ_1?

- no asym at tree
- asym at tree \times loop, if CP from complex cpling and on-shell particles in the loop (divergences cancel in diff, need Im part of Feynman param integrtn)
\(\mathbb{CP} \), complex couplings, loops unitarity and all that...(estimate \(\epsilon \), no loop cahn)

1 the S-matrix \(S \equiv 1 + iT \) is CPT invariant

\[
\langle \phi \ell | S | N \rangle = \langle N | S | \phi \ell \rangle \quad (= \langle \phi \ell | S^\dagger | N \rangle^*)
\]
\(\Phi \), complex couplings, loops unitarity and all that...(estimate \(\epsilon \), no loop calc)

1. The S-matrix \(S \equiv 1 + iT \) is CPT invariant

\[\langle \phi \ell | S | N \rangle = \langle N | S | \phi \ell \rangle \quad (= \langle \phi \ell | S^\dagger | N \rangle^*) \]

And unitary: \(SS^\dagger = 1 = (1 + iT)(1 - iT^\dagger) \)

\[\Rightarrow iT - iT^\dagger + TT^\dagger = 0 \]
\mathcal{CP}, complex couplings, loops unitarity and all that...(estimate ϵ, no loop caln)

1 the S-matrix $S \equiv 1 + iT$ is CPT invariant

$$\langle \phi_\ell | S | N \rangle = \langle N | S | \phi_\ell \rangle \quad (= \langle \phi_\ell | S^\dagger | N \rangle^*)$$

and unitary: $SS^\dagger = 1 = (1 + iT)(1 - iT^\dagger)$

$$\Rightarrow iT - iT^\dagger + TT^\dagger = 0$$

$$\Rightarrow i\langle \phi_\ell | T | N \rangle - i\langle \phi_\ell | T^\dagger | N \rangle + \langle \phi_\ell | TT^\dagger | N \rangle = 0$$

Kolb+Wolfram, NPB '80, Appendix
The S-matrix $S \equiv 1 + i T$ is CPT invariant:

$$\langle \phi \ell | S | N \rangle = \langle N | S | \phi \ell \rangle \quad (= \langle \phi \ell | S^\dagger | N \rangle^*)$$

and unitary: $SS^\dagger = 1 = (1 + i T)(1 - i T^\dagger)$

$$\Rightarrow i T - i T^\dagger + TT^\dagger = 0$$

$$\Rightarrow i \langle \phi \ell | T | N \rangle - i \langle \phi \ell | T^\dagger | N \rangle + \langle \phi \ell | TT^\dagger | N \rangle = 0$$

$$|\langle \phi \ell | T | N \rangle|^2 = |\langle \phi \ell | T^\dagger | N \rangle|^2 - i \langle \phi \ell | T^\dagger | N \rangle \langle N | TT^\dagger | \phi \ell \rangle + i \langle N | T | \phi \ell \rangle \langle \phi \ell | TT^\dagger | N \rangle + ...$$
\(\mathcal{CP} \), complex couplings, loops unitarity and all that...

(estimate \(\epsilon \), no loop caln)

1 the S-matrix \(S \equiv 1 + iT \) is CPT invariant

\[
\langle \phi \ell | S | N \rangle = \langle N | S | \phi \ell \rangle = (\langle \phi \ell | S^\dagger | N \rangle^*)
\]

and unitary: \(SS^\dagger = 1 = (1 + iT)(1 - iT^\dagger) \)

\[
\Rightarrow iT - iT^\dagger + TT^\dagger = 0
\]

\[
\Rightarrow i\langle \phi \ell | T | N \rangle - i\langle \phi \ell | T^\dagger | N \rangle + \langle \phi \ell | TT^\dagger | N \rangle = 0
\]

\[
|\langle \phi \ell | T | N \rangle|^2 = |\langle \phi \ell | T^\dagger | N \rangle|^2 - i\langle \phi \ell | T^\dagger | N \rangle \langle N | TT^\dagger | \phi \ell \rangle + i\langle N | T | \phi \ell \rangle \langle \phi \ell | TT^\dagger | N \rangle + ...
\]

2 We are interested in a \(\mathcal{CP} \) asymmetry:

\[
\epsilon \propto \int d\Pi \left(|\langle \phi \ell | T | N \rangle|^2 - \langle \overline{\phi \ell} | T | N \rangle|^2 \right)
\]

SO (this formula exact, if I kept 2s and sums; \(\int d\Pi = \) phase space)

\[
\epsilon \propto \int d\Pi \text{Im} \left\{ \langle \phi \ell | T^\dagger | N \rangle \langle N | TT^\dagger | \phi \ell \rangle \right\}
\]

\(\Rightarrow \) need complex cplings, and on-shell particles in a loop
Estimating ϵ for hierarchical N_I

Consider simple case: $M_1 \ll M_{2,3}$. Suppose lepton asym generated in \mathcal{CP}, \mathcal{L} decays of N_1:

$$
\epsilon_1^\alpha = \frac{\Gamma(N_1 \to \phi \ell_\alpha) - \Gamma(\tilde{N}_1 \to \tilde{\phi} \tilde{\ell}_\alpha)}{\Gamma(N_1 \to \phi \ell) + \Gamma(\tilde{N}_I \to \tilde{\phi} \tilde{\ell})}
$$

(recall $N_1 = \tilde{N}_1$)

(NB, no intermediate N_1 because cplg combo real)

\[N_I \xrightarrow{\chi} \phi \times \ell_\alpha \quad N_I \xrightarrow{\lambda^* \phi} \lambda \quad N_I \xrightarrow{\lambda \phi} \lambda \]

\[+ N_I \xrightarrow{\lambda^* \phi} \lambda \quad N_I \xrightarrow{\lambda \phi} \lambda \]
Estimating ϵ for hierarchical N_1

Consider simple case: $M_1 \ll M_{2,3}$. Suppose lepton asym generated in \mathcal{CP}, \mathcal{L} decays of N_1:

$$\epsilon_1^\alpha = \frac{\Gamma(N_1 \to \phi \ell_\alpha) - \Gamma(\tilde{N}_1 \to \bar{\phi} \bar{\ell}_\alpha)}{\Gamma(N_1 \to \phi \ell) + \Gamma(\tilde{N}_1 \to \bar{\phi} \bar{\ell})}$$

(recall $N_1 = \tilde{N}_1$)

$$[\kappa]_{\alpha\beta} \sim \frac{[m_\nu]_{\alpha\beta}}{v^2}$$
Estimating ϵ for hierarchical N_1

Consider simple case: $M_1 \ll M_{2,3}$. Suppose lepton asym generated in \mathcal{CP}, \mathcal{L} decays of N_1:

$$\epsilon_1^\alpha = \frac{\Gamma(N_1 \rightarrow \phi \ell_\alpha) - \Gamma(\tilde{N}_1 \rightarrow \bar{\phi} \bar{\ell}_\alpha)}{\Gamma(N_1 \rightarrow \phi \ell) + \Gamma(\tilde{N}_1 \rightarrow \bar{\phi} \bar{\ell})}$$

(recall $N_1 = \tilde{N}_1$)

$$[\kappa]_{\alpha \beta} \sim \frac{[m_\nu]_{\alpha \beta}}{v^2}$$

Recall

$$\Gamma \epsilon \sim \text{Im}\left\{ \langle \phi \bar{\ell} | T | N \rangle^* \langle N | T | \phi \bar{\ell} \rangle \langle \phi \bar{\ell} | T^\dagger | \phi \ell \rangle \right\}$$
Estimating ϵ for hierarchical N_i

Consider simple case: $M_1 \ll M_{2,3}$. Suppose lepton asym generated in \mathcal{CP}, \mathcal{L} decays of N_1:

$$\epsilon_1^\alpha = \frac{\Gamma(N_1 \to \phi \ell_\alpha) - \Gamma(\bar{N}_1 \to \bar{\phi} \bar{\ell}_\alpha)}{\Gamma(N_1 \to \phi \ell) + \Gamma(\bar{N}_1 \to \bar{\phi} \bar{\ell})}$$

(recall $N_1 = \bar{N}_1$)

Recall

$$\Gamma\epsilon \sim \text{Im}\left\{ \langle \bar{\phi} \ell | T | N \rangle^* \langle N | T | \phi \ell \rangle \langle \phi \ell | T^\dagger | \phi \ell \rangle \right\}$$

$$\Gamma\epsilon \propto \int d\mathcal{P} \text{Im}\left\{ |M(N \to \phi \ell)|M(N \to \phi \ell)M(\phi \ell \to \phi \ell) \right\}$$

$$\epsilon_1 \sim M \frac{\text{Im}\{\lambda \lambda \kappa^*\}}{8\pi |\lambda|^2}$$
Estimating ϵ for hierarchical N_i

Consider simple case: $M_1 \ll M_{2,3}$. Suppose lepton asym generated in CP, L decays of N_1:

$$\epsilon_1^\alpha = \frac{\Gamma(N_1 \to \phi \ell_\alpha) - \Gamma(\bar{N}_1 \to \bar{\phi} \bar{\ell}_\alpha)}{\Gamma(N_1 \to \phi \ell) + \Gamma(\bar{N}_1 \to \bar{\phi} \bar{\ell})} \quad \text{(recall } N_1 = \bar{N}_1)$$

$$[\kappa]_{\alpha \beta} \sim \frac{[m_\nu]_{\alpha \beta}}{v^2}$$

Recall

$$\Gamma_\epsilon \sim \text{Im} \left\{ \langle \phi \ell | T | N \rangle^* \langle N | T | \phi \ell \rangle \langle \phi \ell | T^\dagger | \phi \ell \rangle \right\}$$

$$\Gamma_\epsilon \propto \int d\Pi \text{Im} \left\{ M^* (N \to \bar{\phi} \ell) M(N \to \phi \ell) M(\bar{\phi} \ell \to \phi \ell) \right\}$$

$$\epsilon_1 \sim M \frac{\text{Im} \{\lambda \lambda \kappa^*\}}{8\pi |\lambda|^2} < \frac{3}{8\pi} \frac{m_\nu^{\text{max}} M_1}{v^2} \sim 10^{-6} \frac{M_1}{10^9 \text{GeV}} \gtrsim 10^{-6}$$

so for $M_1 \ll M_{2,3}$, need $M_1 \gtrsim 10^9$ GeV to obtain sufficient ϵ.
Maybe want $M_K < 10^9$ GeV? Leptogenesis with lighter N_I...

1. $M_I \sim M_J \Leftrightarrow$ resonantly enhance ϵ ... up to $\epsilon \lesssim 1$.
2. at lower T, age of Universe is longer, takes more care to get out-of-equilibrium...
3. need to generate L asym before Electroweak PT (to profit from sphalerons)...

\Rightarrow leptogenesis via N_I decay/scattering works for degen N_I down to $M_I \sim$ TeV

For even lighter M_I, can make asym by coherent oscillations and scatterings of N_I...
νMSM : type 1 seesaw below 100 GeV gives BAU and DM

Asaka + Shaposhnikov

thesis Canetti

ingredients : SM +

\[N_{2,3} : 100 \text{ MeV} \lesssim M_{2,3} \lesssim 10 \text{ GeV}, \Delta M \approx \begin{cases} 10^{-6} \text{ eV} & Y_B, \Omega_{DM} \\ \text{keV} & Y_B, \text{NOT } \Omega_{DM} \end{cases} \]

Yukawas \(\equiv \) give 2 light SM neutrinos via seesaw

\(N_1 : M_1 \sim \text{keV} \). WDM candidate.

feeble coupled (negligeable contribution \(m_{\nu,SM} \))

scenario :

Population of \(N_{2,3} \) produced via Yukawas before EPT

Produce \(\Delta L \rightarrow Y_B \), before EPT, via oscillations of \(N_{2,3} \) coherent with Yukawa scattering to \(\nu_{SM} \)

Produce \(\Delta L \gtrsim 10^{-5} \) via osc. and decay of \(N_{2,3} \) after EPT

Can produce sufficient distribution of \(N_1 \) via osc.

tests :

\(N_{2,3} \) : beam dump, SHIP

\(N_1 \) as DM : X-rays from DM decay, WDM bounds (depend on momentum distribution)
How does asym generation work? (very simplified!)

1 at $T \lesssim \text{TeV}$ (recall $\lambda \lesssim 10^{-7}$), produce N_2, N_3 via Yukawa interaction $\lambda \tilde{N} \ell \cdot \phi$.
How does asym generation work? (very simplified!)

1 at $T \lesssim \text{TeV}$ (recall $\lambda \lesssim 10^{-7}$), produce N_2, N_3 via Yukawa interaction $\lambda \overline{N}_{\ell} \cdot \phi$

2 N_2, N_3 oscillate (almost degenerate)

3 back to ν_L via λ
How does asym generation work? (very simplified!)

1 at $T \lesssim \text{TeV}$ (recall $\lambda \lesssim 10^{-7}$), produce N_2, N_3 via Yukawa interaction $\lambda \overline{N} \ell \cdot \phi$

2 N_2, N_3 oscillate (almost degenerate)

3 back to ν_L via λ

at $\tau_U \sim \tau_{osc}$, 1,2,3 are coherent, so CPV from λ-ΔM^2-λ gives flavour asyms in $\nu_{L\alpha}$ (to small)

lepton number in $\ell_L + N_R$ is conserved (actually, L_{SM}+ helicity of N_i)

from $\tau_{osc} \rightarrow \tau_{EWPT}$, asyms in $\nu_{L\alpha}$ seed asyms in $N \rightarrow$ asyms in $\nu_{L\alpha}$ (enough asym)

...works also in detailed calculations with all available technology...

(eg also include lepton number violating interactions)

Teresi Hambye
Eijima + Shaposhnikov
Ghiglieri+ Laine
\[U^2 = \text{Tr}[\lambda M^{-2} \lambda^\dagger] \]
Summary

Leptogenesis is a class of recipes, that use (majorana) neutrino mass models to generate the matter excess. The model generates a lepton asymmetry (before the Electroweak Phase Transition), and the non-perturbative SM $B+L$ violn reprocesses it to a baryon excess.

* efficient, to use the BSM for m_ν to generate the Baryon Asym.
* using SM $B+L$ violn ($\Delta B = \Delta L = 3$) avoids proton lifetime bound
* *it works* ...rather well, for a wide range of parameters
more CPV in \(\{ U, m_\nu \} \) if Majorana

- Suppose that all parameters in \(\mathcal{L} \) that can be complex (\(U \) and \(m_\nu \)), are complex
- 3 angles and 6 phases in generic unitary matrix \(U \) (18 real parameters in arbitrary \(3 \times 3 \) complex matrix. Unitarity \(UU^\dagger = 1 \) reduces this to 9.)
more CPV in \(\{U, m_\nu\} \) if Majorana

- suppose that all parameters in \(\mathcal{L} \) that can be complex (\(U \) and \(m_\nu \)), are complex
- 3 angles and 6 phases in generic unitary matrix \(U \) (18 real parameters in arbitrary \(3 \times 3 \) complex matrix. Unitarity \(UU^\dagger = 1 \) reduces this to 9.)
- five relative phases between the fields \(e_L, \mu_L, \tau_L, \nu_1, \nu_2, \nu_3 \) ...so can choose the 5 relative phases among LH fermions, to remove all but one phase in the mixing matrix.
more CPV in \(\{ U, m_\nu \} \) if Majorana

• suppose that all parameters in \(\mathcal{L} \) that can be complex (\(U \) and \(m_\nu \)), are complex
• 3 angles and 6 phases in generic unitary matrix \(U \) (18 real parameters in arbitrary \(3 \times 3 \) complex matrix. Unitarity \(UU^\dagger = 1 \) reduces this to 9.)
• five relative phases between the fields \(e_L, \mu_L, \tau_L, \nu_1, \nu_2, \nu_3 \) ...so can choose the 5 relative phases among LH fermions, to remove all but one phase in the mixing matrix.
• now check if can make the masses real : if dirac masses, absorb phase of mass with \(\nu_RI \). If \(\nu_L3 \) has Majorana mass, between self and anti-self, choose absolute phase of \(\nu_L3 \) to make the mass real. Now all LH fermion phases are fixed, and cannot remove phases from \(m_\nu1, m_\nu2 \).

\[\Rightarrow \] extra CPV in processes where Majorana mass appears linearly (not as \(mm^* \), not in kinematics = not in oscillations)