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All theorists are liars
Neutrino physics has a rich history of anomalies:

It took 40 years for Ray Davis and John Bahcall to be
taken seriously with the solar neutrino anomaly.

The atmospheric neutrino anomaly did not last quite
that long, but still was labeled an anomaly till
Super-K came around in 1998.

Much of the anomalous nature stemmed from
theoretical prejudice: neutrinos are massless, neutrino
mixing angles are small, astrophysics isn’t an exact
science, chemistry is really scary asf.

Of course, I happen to be a theorist . . .
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Why sterile?

We have measured in neutrino oscillation:

• ∆m2
21 ∼ 8 · 10−5 eV2 and θ12 ∼ 1/2

• ∆m2
31 ∼ 2 · 10−3 eV2 and θ23 ∼ π/4

• θ13 ∼ 0.16

This implies a lower bound on the mass of the
heaviest neutrino

√

2 · 10−3 eV2 ∼ 0.04 eV This IS BSM physics!

Any ∆m2 ≫ ∆m2
21,∆m2

31 requires a 4th neutrino,
BUT only three neutrinos with mν ≤ mZ couple to
the Z ⇒ “sterile” neutrino.
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Evidence in favor
Or at least at odds with a simple 3-flavor framework

• LSND ν̄µ → ν̄e
• MiniBooNE ν̄µ → ν̄e and νµ → νe
• Reactors νe → νe
• Gallium νe → νe
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LSND and MiniBooNE

LSND 1995
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P (ν̄µ → ν̄e) ≃ 0.003

Statistically significant: 4− 6σ
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Fermilab SBN
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Signal to noise not so different from LSND. . . will a
near detector of completely different design help?
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JSNS2

Pion decay at rest
at JSNS, Gd-doped
scintillator.

JSNS2, 2017

Direct test of the LSND result → should have been
done 20 years ago!
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The reactor anomaly
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Mueller et al., 2011, 2012 – where are all the
neutrinos gone?
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Contributors to the anomaly

6% deficit of ν̄e from nuclear reactors at short
distances

• 3% increase in reactor neutrino fluxes

• decrease in neutron lifetime

• inclusion of long-lived isotopes (non-equilibrium
correction)

The effects is therefore only partially due to the fluxes,
but the error budget is clearly dominated by the fluxes.
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Neutron lifetime

range used in past reactor analyses
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Neutrinos from fission

N=50 N=82

Z=50

235U
239Pu
stable

fission yield

8E-5 0.004 0.008
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β-branches
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β-spectrum from fission

235U foil inside the High
Flux Reactor at ILL

Electron spectroscopy
with a magnetic spec-
trometer

Same method used for
239Pu and 241Pu

For 238U recent measure-
ment by Haag et al., 2013

Schreckenbach, et al. 1985.
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A priori calculations
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Estienne et al., 2019

Updated β-feeding func-
tions from total absorption
γ spectroscopy (safe from
pandemonium) for key
isotopes.

For 238, 239Pu and 241Pu
better than 5% agreement
with beta decay data

235U, the odd-one-out?
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Forbidden decays

ΡpHrL

ΡnHrL

ΨHrL

EΒ=10MeV
A=140

l=0

l=1
l=2

0 5 10 15 20
r @fmD

e,ν̄ final state can form
a singlet or triplet spin
state J=0 or J=1

Allowed:
s-wave emission (l = 0)

Forbidden:
p-wave emission (l = 1)
or l > 1

Significant nuclear structure dependence in forbidden
decays→ large unquantifiable uncertainties!
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Look at past data
a Experiment fa

235
fa

238
fa

239
fa

241
R

exp
a,SH

σexp
a

[%] σcor
a

[%] La [m]

1 Bugey-4 0.538 0.078 0.328 0.056 0.932 1.4 1.4 15

2 Rovno91 0.606 0.074 0.277 0.043 0.930 2.8 1.8 18

3 Rovno88-1I 0.607 0.074 0.277 0.042 0.907 6.4 3.8 18

4 Rovno88-2I 0.603 0.076 0.276 0.045 0.938 6.4 3.8 18

5 Rovno88-1S 0.606 0.074 0.277 0.043 0.962 7.3 3.8 18

6 Rovno88-2S 0.557 0.076 0.313 0.054 0.949 7.3 3.8 25

7 Rovno88-3S 0.606 0.074 0.274 0.046 0.928 6.8 3.8 18

8 Bugey-3-15 0.538 0.078 0.328 0.056 0.936 4.2 4.1 15

9 Bugey-3-40 0.538 0.078 0.328 0.056 0.942 4.3 4.1 40

10 Bugey-3-95 0.538 0.078 0.328 0.056 0.867 15.2 4.1 95

11 Gosgen-38 0.619 0.067 0.272 0.042 0.955 5.4 3.8 37.9

12 Gosgen-46 0.584 0.068 0.298 0.050 0.981 5.4 3.8 45.9

13 Gosgen-65 0.543 0.070 0.329 0.058 0.915 6.7 3.8 64.7

14 ILL 1 0 0 0 0.792 9.1 8.0 8.76

15 Krasnoyarsk87-33 1 0 0 0 0.925 5.0 4.8 32.8

16 Krasnoyarsk87-92 1 0 0 0 0.942 20.4 4.8 92.3

17 Krasnoyarsk94-57 1 0 0 0 0.936 4.2 2.5 57

18 Krasnoyarsk99-34 1 0 0 0 0.946 3.0 2.5 34

19 SRP-18 1 0 0 0 0.941 2.8 0.0 18.2

20 SRP-24 1 0 0 0 1.006 2.9 0.0 23.8

21 Nucifer 0.926 0.061 0.008 0.005 1.014 10.7 0.0 7.2

22 Chooz 0.496 0.087 0.351 0.066 0.996 3.2 0.0 ≈ 1000

23 Palo Verde 0.600 0.070 0.270 0.060 0.997 5.4 0.0 ≈ 800

24 Daya Bay 0.561 0.076 0.307 0.056 0.946 2.0 0.0 ≈ 550

25 RENO 0.569 0.073 0.301 0.056 0.946 2.1 0.0 ≈ 410

26 Double Chooz 0.511 0.087 0.340 0.062 0.935 1.4 0.0 ≈ 415

Giunti, 2016
P. Huber – VT CNP – p. 16



What does this tell us?

Giunti, 2016

Is 235U odd?
Are the error bars for 235U just smaller?
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Latest result of Daya Bay

Daya Bay, 2017 and Diaz et al., 2019

Only an issue if
the prediction
of Pu239 in the
Huber+Mueller
model is correct.
Hayes et al., 2017
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The 5 MeV bump
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NEOS
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24m from a large core
(power reactor), con-
firms bump
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NEOS vs Daya Bay
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Huber, 2017

There is more U235 in NEOS, since core is fresh ⇒
3− 4 σ evidence against Pu as sole source of bump,
but equal bump size is still allowed at better than 2 σ.
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Latest data vs bump

PROSPECT 2018

Disfavors 235U as
sole culprit at 2.1 σ
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in 235U at 4 σ
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Explanations?

Direct summation of latest ENSDF database with
allowed beta-spectrum shape Sonzogni et al., 2016

This direct summation, as all other direct summations,
does not agree with the Schreckenbach measurement.
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What happened?

Fission yield data has been suspected previously Hayes

et al. 2015 and this what Sonzogni et al., 2016 found:

Who is the odd-
one-out?

Fission yields for germanium-86 wrong in ENDF/B
but not in JEFF.
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BSM explanation for the bump

Berryman, Brdar, PH, 2018

Requires a sterile neutrino consistent with the reactor
anomaly and a new vector state X coupling to quarks.
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Does it work?

  

 

  

 

 

 
   

 

 

  

 
 

 

 

 

 

 

 

 

  

 

  

 
    

 

 

   

 
 

 

      

 

 

 

  

 

Berryman, Brdar, PH, 2018

Excellent fit

Existence of high-
energy neutrino flux is
predicted

High energy flux is in
agreement with Daya
Bay bounds

Position and width of
bump entirely deter-
mined by SM physics
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Is it allowed?

Berryman, Brdar, PH, 2018

Shown is axial coupling
case, vector case even
worse.

COHERENT data and
old D2O reactor data can
not be reconciled with
this model.

The bump remains unexplained with either BSM or
nuclear physics!
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NEOS and sterile neutrinos

adapted from NEOS, 2016

NEOS reports a limit,
but their best fit oc-
curs at sin2 2θ = 0.05
and ∆m2 = 1.73 eV2

with a χ2 value
6.5 below
the no-oscillation hy-
pothesis.

DANSS has a similar result.
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DANSS and NEOS
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Dentler et al. 2018

This is a spectral effect independent of rate and shape
predictions!
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Reactor fit
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More than 3σ ev-
idence for oscilla-
tion even without
using a flux predic-
tion!

P. Huber – VT CNP – p. 30



Gallium anomaly

25% deficit of νe from radioactive sources at short
distances

• Effect depends on nuclear matrix element

• R is a calibration constant
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Nuclear matrix elements
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Nuclear matrix elements – II

|Ue4|
2

∆
m

4
12
  
  
[e

V
2
]

90% CL

Bahcall

Haxton

Frekers

JUN45

10
−3

10
−2

10
−1

10
−1

1

10

|Ue4|
2

∆
m

4
12
  
  
[e

V
2
]

Reactors

1σ

2σ

3σ

Gallium − JUN45

68.27% CL (1σ)

90.00% CL
95.45% CL (2σ)

99.00% CL
99.73% CL (3σ)

10
−3

10
−2

10
−1

10
−1

1

10

Kostensalo et al. 2019

Significance decreases from 3.0 σ to 2.3 σ, but all

results in the νe/ν̄e sector are fully consistent!
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Disappearance and appearance

νµ → νe requires that the sterile neutrino mixes with
both νe and νµ

⇒ there must be effects in both νe → νe and νµ → νµ

Up to factors of 2, the energy averaged probabilities
obey

Pµe . (1− Pµµ)(1− Pee)
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Disappearance data
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sin2 2θeµ = 4|Ue4Uµ4|
2

with 1− Pee ∝ |Ue4|
2

and 1− Pµµ ∝ |Uµ4|
2

There is (and has been for decades) a strong tension
between global appearance data and disappearance
data.
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Global fit
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Gariazzo et al., 2017

Caveat: not entirely up-to-date.
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Finding a sterile neutrino

All pieces of evidence have in common that they are
less than 5σ effects and they may be all due to the
extraordinary difficulty of performing neutrino
experiments, if not:

• N sterile neutrinos are the simplest explanation

• Tension with null results in disappearance
remains

Due to their special nature as SM gauge singlets
sterile neutrinos are strong candidates for being a
portal to a hidden sector – significant experimental
activity.
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νe outlook

Berryman, PH, in preparation

Current νe/ν̄e data
points to a region at the
edge of the sensitivity
current reactor experi-
ments.

Shown are the allowed regions from a fit to
reactor data after the year 2010 separated
into rate and spectrum. The reactor flux
model uses the latest ab initio results from
Estienne et al. for the central value and the
Huber-Mueller results for the error bars.
The gallium region is from Kostensalo et al..
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Summary

Tension in global fits

• Maybe more complicated than sterile neutrino

• And/or not all data is right

• Lots of nuclear physics uncertainties

With NEOS and DANSS we have a positive indication
from reactors independent of flux predictions.

In combination, light sterile neutrinos are one of the
best cases for New Physics, anywhere!
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Questions?
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