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2= Agenda
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3

.. 2

Current State-of-the-Art Improvement Opportunities 3
and Challenges and Future R&D ﬁ
v' Cavity statistics v" Knowledge gaps 5
v Cryomodule statistics v" Tailored mitigation strategies §
<

v’ Linac cavity experiences v' Comprehensive studies for =
v' LCLS-Il and PIP-Il approaches particle dynamics o

v Systematic design optimizations

This presentation is not meant to be all things considered.
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Current State-of-the-Art and Challenges
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Figure 1: Distribution of peak gradients achieved by LCLS- 0 10 20 30 40 50 =
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Figure 2: Stacked histogram of the distribution of limits to
the usable accelerating gradient of LCLS-II cavities installed 3 5 7 s = i
in cryomodules. Figure 4: Breakdown of limiting factor (quench “BD”, QO
“QO0” or field emission “FE”) for the “as received” usable

LCLS-Il and HE cavity VT acceptance requires FE-free .
gradient.

[11J.T. Maniscalco, et al., Proc. of 20th Int. Conf. on RF Superconductivity SRF2021, East Lansing, Ml, USA, HPCAV009.
2/5/2026 G Wu| GARD RF Roadmap Update - SRF [2] N. Walker et. al., Proceedings of LINAC2016, East Lansing, MI, USA, WE1A04
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& Cryomodaule statistics
XFEL/LCLS-II/HE

LCLS-Il and HE cavity acceptance requires FE-free
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XFEL Cryomodule performance [1] LCLS-II Cavity performance limitations [2] LCLS-II-HE: number of cavities with FE [3]

[1] N. Walker et. al., Proceedings of LINAC2016, East Lansing, Ml, USA, WE1A04
[2] D. Gonnella, Proceedings of SRF’23, Grand Rapids, MI, USA, MOIAAO4
2/5/2026 G Wu | GARD RF Roadmap Update - SRF [3] M. Checchin, Private communication




LCLS-II

& Linac Cavity Statistics
XFEL[1] and LCLS-I[2]
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Figure 5: Neutron map of the accelerator at 14.0 and 17.5 GeV. The administrative limit is 500 uSv/h. A12 was operated
above its maximum allowed gradient (radiation limited). A18 had a newly detected field emitter. After investigation, the
emitting cavity was detuned, returning the overall neutron radiation of the station below the administrative limit.
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[1]1)J. Branlard et al., “Four Years of Successful Operation of the European XFEL”, Proceedings of
20th Int. Conf. on RF Superconductivity, SRF2021, East Lansing, Ml, USA, MOOFAV06
[2] D. Gonnella, Proceedings of SRF’23, Grand Rapids, Ml, USA, MOIAAO4
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No statistical degradation due to installation.
Operational experience is still pending.




4& LCLS-Il and HE Improvement

)

String assembly purging/backfill

bypassed flexible vacuum hose
- Bypassing the flexible hose proposed by Stephane Berry

LCLS-1l HE vCM was completely FE-free, measured by all-
around detectors, and at 100% RF duty cycle
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S. Posen et al. Phys. Rev. Accel. Beams 25, 042001
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aF Infrastructure and Tooling Improvement

PIP-II Improvement

e String assembly purging/backfill
bypassed flexible vacuum hose
 Adjustable lower overpressure

A precise pressure measurement, controllable overpressure,
and fast detection of pressure drops were implemented for the
new system.

A three-cavity HB650 half-string assembly

has a volume of 0.29 m3.

A 50 mbar overpressure could result in an

effective 86 L/m flow rate through the half

string.

Lower overpressure was implemented
and is being validated
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CEA/Saclay designed filter diffuser (Stephane Berry)
Validated
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2% Hardware and Component Design

Low particulate flanges
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Standard Bellows LCLS-II HE bellows PIP-11 bellows
One side flange is fixed, and one side Use the stud slots instead of through holes Use the slotted bolt holes instead of rotatable
flange is rotatable. It still has a rotatable flange on one side flanges - Mattia Parise and the PIP-Il team
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aF Infrastructure and Tooling Improvement

PIP-II Improvement

Robotic-assisted clean assembly
* Reduced potential cavity contamination risk
* Improved assembly ergonomics
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Pre-alignment of the power coupler Cobot-assisted coupler assembly at CEA J. Cobot-assisted cavity assembly for
flange C. Narug, TTC’2023, Fermilab Drant and S. Berry, PIP-Il Communication vertical test

SSR2 cavity coupler assembly validated
5-cell LB650 coupler assembly validated
5-cell LB650 cavity VT cleanroom assembly validation in progress
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Improvement Opportunities and Future R&D




2% A Big Knowledge Gap

We believe ..
Anecdotal Statistics

Empirical Hypothesis Very likely
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Best practice We are not sure
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a¢ Comprehensive studies for particle dynamics

B Fluid dynamics MEICHERS
model
Size
‘
Measurement *'
Vacuum
B

Distance

Electro-
Vacuum mechanical

Transport model Sticking

Force

Vibration

Charges

Improve our understanding from empirical to experimental
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2= Tailored mitigation strategies

The first few steps
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Validating — Vacuum valves ﬁ
— flexible hoses §
Conceptual — Fasteners <
Validating — Flanges =
— Seals 2
— Tooling >
S
* Processes and Assembly ﬁ

— Chemistry

— Water rinsing
Validating — Assembly
validating Conceptual — Evacuation, backfill, and purging

* Operators
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aF Infrastructure and Tooling Improvement

Advance the Al-powered robotic assembly

« 7th-axis (rail) for robotic arm

* End effector development

Al development for the Robotic operating system
integration

Collaboration with JLab, KEK, and CEA
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Robotic-assisted clean assembly
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& Systematic design optimization for clean

assembly
Needs a paradigm shift thinking for the Al Robotic future for cryomodule gradients >40 MV/m

» Vacuum interface
« Can we invent low-particulate vacuum seals?
« Can we engineer low-particulate fasteners?

« Can we engineer low-particulate flanges?

e Cavities
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» Are there improvement opportunities for cavity design?
« Can we reconsider the current cavity-to-cryomodule workflow?
* Tooling

» Are robotic hands (end effectors) clean room compatible?
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2= Conclusion — an Advocacy for Particulates free
future with Al/Robotic SRF

» Clean assembly has a knowledge gap (R&D)
 Cavity string design is “mature”, also “stale” (R&D)

If sufficiently supported, the future could be very “clean and FE-free”.
* In 5 years, a robotic assembly with many improvements to the current cryomodule design

* In 10-15 years, a new type of cryomodule design that is robotically compatible and achieves high
yield, high performance
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