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3= Qutline

Motivating SRF structures for HEP accelerators

Tunable SRF cavity for synchrotron applications

Crabbing cavity for collider applications (QMiR)

Travelling wave cavity for compact high-gradient machines
Summary & Outlook for GARD SRF structures
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{& Developing new SRF structures for HEP

Novel SRF structures enabling future machines pushing energy and luminosity frontiers

« SRF structures optimized for Q, or gradient in novel ways will enable next-generation
HEP experiments, and support accelerator stewardship
* Is the future of SRF increasingly sophisticated impurity doping/RF surface processing?

» Other kinds of impurity doping, Nb3Sn, SIS multilayers, etc. Production challenges: How to move from
small test-cases/samples to full-size SRF cavities? How to scale to ~100s of cavities for a production run?

* What else can we optimize? Nb material is likely sticking around, we’ve been perfecting
fabrication and processing techniques for decades...
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Using well-developed Nb fabrication/processing techniques, we can exploit new cavity geometries to unlock
transformational performance improvements.

Tunable SRF cavity for RCSs QMiR Cavity for EIC Travelling wave cavity
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Novel SRF structures enabling future machines pushing energy and luminosity frontiers

« SRF structures optimized for Q, or gradient in novel ways will enable next-generation
HEP experiments, and support accelerator stewardship
* Is the future of SRF increasingly sophisticated impurity doping/RF surface processing?

» Other kinds of impurity doping, Nb3Sn, SIS multilayers, etc. Production challenges: How to move from
small test-cases/samples to full-size SRF cavities? How to scale to ~100s of cavities for a production run?

* What else can we optimize? Nb material is likely sticking around, we’ve been perfecting
fabrication and processing techniques for decades...

&
=
<
o
)
<
o
o
<
L
=
"
0
<
_
<
Z
o
<
7
=
o
LU
s

Using well-developed Nb fabrication/processing techniques, we can exploit new cavity geometries to unlock
transformational performance improvements.

Tunable SRF cavity for RCSs QMIiR Cavity for EIC Travelling wave cavity
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3F Tunable SRF cavities for rapid-cycling synchrotron

SRF has a leading place in next-generation HEP machines

Fermilab Accelerator Complex

» Rapid-cycling synchrotrons are key components of
accelerator complexes

 Despite order-of-magnitude cost-saving benefits of
SREF, it has yet to be developed for RCS

 FNAL MI must be upgraded to support LBNF/Dune \‘d

» Current baseline plan adds 17 NC cavities to the existing 20

» Higher beam impedance, significant RF power losses/draw, Current MI cavity:
increased facility complexity, limited tunnel space

 |nstead, with tunable SRF cavities: Proposed tunable

* Replace 37 NC cavities with just 6 SRF cavities! concept:

* Reduced beam impedance, save physical space, RF power

* Novel SRF technological development opportunity

» Successful demonstration in a facility like the MI will pave
the way for adoption of tunable SRF technology by the
accelerator community

FERMINATIONALACCELERATORLABORATORY
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3¢ Primary tunable SRF technical challenges :
In context of FNAL Main Injector... — Value §

Beam energy 8 — 120 GeV i

MI parameters: MI ramp 0655 | W

Protons on target per cycle 7.5 x10 (o)

. Beam power at 120 GeV 2.22 MW =

° Tu n|ng range & Speed IXIaxilmulg} ac;:felerating rate 500 (E)e;;/s é
cceleration time ~U. S (F1]

» MI: ~300 kHz (0.6% tunability) at 5.2 MHz/sec Pl mii | B

maximum RF frequency change 0.296 MHz 2

Required acc.eleration (Vesin ¢s) 5.54 MV i

* HOM damping Ry Yo oy

. . . Operating peak voltage 1.3 MV O

« Sufficient HOM damping over discrete (CBM) and Peak RF power per cavity 1 MW E

continuous spectrum, minimize multipacting areas é

. Other challenges Field distribution Tuning membrane E

E

» Large forward-power needs (~1MW), low-temperature
Nb fatigue studies (underway), surface processing

Preliminary design studies favor an
axisymmetric quarter-wave resonator concept




3= Current and future work at FNAL

« Initiated flexible membrane tuning concept development

» Precedent: RHIC storage cavity. Nb fatigue studies underway.

 Proof-of-concept 1/3-scale tunable cavity in development

» Establish fabrication techniques, validate Q, gradient, processing
techniques, measure HOM modes, bench-test tuning/frequency range

Parameter Value
RIQ=Y% 104.8 Q
Cavity stored energy, U, at 1 MV 28.7J
Geometry factor, G 38.7 Q2

Qo at Ry = 10 nQ2 3.9 x 107
Cavity wall power dissipation at 1 MV 25 W
Qext 9,540
Cavity bandwidth 5.56 kHz
Frequency tuning range ~ 0.5 MHz
Maximum frequency slew rate 5.2 MHz/s
Maximum surface E field at 1 MV 31.1 MV/m
Maximum surface B field at 1 MV 29.6 mT

Table 2: Tentative 53 MHz MI QWR parameters

 Derisked by 1/3-scale development, full-scale cavity
development becomes much more feasible!

MI: 0.6% tunability RHIC: 0.06% tunability*

attached to
tuner motor /s

Fundamental

Cavity ;
mode damper port

FIG. 1. 56 MHz SRF cavity with a total length of 1.3 meters.
*Qiong Wu et al., Phys. Rev. Accel. Beams, 22:102001, October 2019.

Scaled 159 MHz
proof-of-concept
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2= Future outlook for tunable SRF

 Transformational improvement in facility performance, efficiency, and flexibility!

* Next-generation machines pursuing high-current operations struggle with dangerous instabilities,
significantly reducing beam impedance by employing small # of SRF cavities will be critical

« Timeline for ACE-MIRT is aggressive, supporting accelerated DUNE project (P5 report). R&D
now is critical. Tunable cavity proof-of-principle must be demonstrated in a timely manner to
become a viable candidate for ACE-MIRT

« Other Tunable SRF cavity applications for synchrotrons: Brookhaven’'s AGS, Hadron Storage
Ring for EIC, & more.
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R&D X6

Cryogenic Nb fatigue testing

1/3 scale proof-of-principle cavity
Fabrication/procurement for full-scale cavit
HOM, FPC, and tuner testing/validation
1-cavity cryomodule design

Cryomodule procurement and fabrication
Full horizontal cold testing
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QMIR Crab Cavity for EIC




*A. Lunin, V. Yakovlev, FNAL

£& QMIiR Cavity for EIC

&
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. . . Crab cavity Crab cavity o
Quasi-waveguide Multicell Resonator \FQ.. P 5
with ” i

~._ Crab cavities - o

‘: i q- Y + 19

« “Crabbing” to directly increase collider luminosity L=~ = [} ;u
» Trapped dipole mode introduces a transverse kick to beam i = o o m

« Compact and efficient single crab cavity for EIC Coliision =
without <

» Optimized for low surface fields Crab cavities 5

« Strong HOM damping, simplified design with no additional couplers Bp =60 mT E

=

o

™

Surface Magnetic Field

Operating Mode EIC Crab Cavity Aperture Limit: $103 mm [1]

Freq 400 MHz [1] BNL-221006-2021-FORE

Vi 4.75 MV T

(R/Q). 2250

G-factor 160 r Ep =32 MV/m

@160

——

Bp, max 60 mT
Ep, max 32 MV/m
Wiioreo 40)
Length 3000 mm

Surface Electric Field




{& Advantages of QMIR for EIC

HOM Spectrum, (R/Q), [Q]
Red —horizontal Blue -vertical

* In CW RF operation, nominal cryo-load
Is expected to be as low as 6W

« Same-order modes are coupled only to
the input waveguide port, no need for
additional coupling

* Monopole HOMSs are mostly loaded into
the coaxial line

« Est. 40 kW solid state amplifier will be
sufficient to maintain crabbing voltage,
and compensate for beam ON and
microphonics

*A. Lunin, V. Yakovlev, FNAL
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HOM Q-External
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000 110 5
. O
10
1.10°
10 o
(@] (@] o
o o 1.10* 0
O o
1 0 © 8 s O
©Boo 1.10° i >
€S -
© S
0.01 a Q 100 o
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
Frequency, GHz Frequency, GHz
SOMode #1 )

o -

1st Dipole SOM
F =0.340 GHz
QE = 4500
(RIQ), =20

2nd Dipole SOM
F =0.370 GHz
QE = 5500
(RIQ), =0.01Q

Dipole HOM
F =0.512 GHz
QE =1.0E4
(RIQ)x =5Q

SOMode #2

Monopole HOM
F =0.545 GHz
QE =440
(R/Q); =120 Q

FERMINATIONALACCELERATORLABORATORY

Monopole HOM
F =0.556 GHz
QE =1.8E4
(RIQ)z=14 Q



*A. Lunin, V. Yakovlev, FNAL

2= Future and outlook for QMiR

 QMIR is a good option for the EIC Crab Cavity
 Design is radially compact (<0.35 m) and simple;
« Sparse HOM spectrum and small loss/kick factors;

* QMIR re-optimized for 400 MHz with an aperture of 160 mm
* 1 QMIiR can provide nominal 4.75 MV kick for EIC proton bunch;
 Cavity has low operating surface fields: Ep <32 MV/m and Bp <
« SOM/HOM are damped below EIC specifications!

* Fermilab can design, build and test the QMIR cavity for EIC

60 mT

» Further design optimization is possible to meet detailed requirements
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Traveling wave cavity
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{& Advantages of Traveling Wave structures

Journey towards high-gradient SRF...

» SC traveling wave structures (considered since ~1968!)
» Transformational advantages: ~40% higher accelerating
efficiency than SW
* Increase in transit time factor, T: Standing wave ~0.7, TW~0.9
» Lower surface magnetic field: 20% increase in E_.

« LargerV

group 1S More tolerant of manufacturing defects => longer cavities

* Use resonant feedback waveguide to not waste RF power
« Significant cost-reductions possible for linear machines*
* HELEN achieves 250 GeV CM energy in 7.5 km

SLAC-PUB-437
June 1968

CONSIDERATION OF THE USE OF FEEDBACK IN A
TRAVELING WAVE SUPERCONDUCTING ACCELERATOR* t

R. B. Neal
Stanford Linear Accelerator Center
Stanford University, Stanford, California

1. Introduction

In a standing-wave accelerator structure, essentially all of the input RF
power is inherently utilized (assuming proper input matching) to set up the ac-
celerating fields and for conversion to beam power. Because of this basic sim-
plicity all of the experimental work on superconducting accelerators carried out
to date has employed the standing-wave structure. The theoretical performance
of the standing-wave superconducting accelerator under beam loading conditions
has been studied by Wilson and Schwettman. 2 (See Section 6 of this report for
further discussion. ) The energy gain in a properly matched standing-wave (SW)

del diceilel o lo Loadi i T
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*S. Belomestnykh et al., “Superconducting radio frequency linear collider HELEN,” JINST 18, P09039 (2023)
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# 3'Ce" COId tests . H?gh—powertest.ing(>500VV) ongoing

, , * Higher Qe1 hoping to demonstrate
First demonstration! higher gradient.
* Improving cold-temperature tuning
methods to demonstrate high-power

Low-power (<10W) cold test with existing circuitry traveling wave (Spring 2026)

* Input coupling (Qext1) ~10°
e TW signals at 1303.155 MHz successfully tuned at 2K! e

* Yellow: forward wave signal |
» Blue: suppressed backward wave signal (30dB less)
* Purple: a signal from the calibration pick up.

541 LOg Mag 1.000d8/ Ref -82.00d8 {EQ\ Smo
¢ 531 Log rag 5.000d8,/ Ref qo .00d8 [EqQu SmO

e Forward wave

77-00 =1 1.3031550 Gnz -78.744 dB

-78.00 ‘
|
79.00
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Backward wave
R |
1 Center 1.303155 GHz' BRI

chl Trl s41 »>1 1 3031550 GHz -78. 744 dB
ch1 Tr s31 1 3031550 GM2 110 ds

The 3-cell cavity on VTS support structure




{& Half-meter scale waveguide innovation

» Design and evaluate double-directional coupler

concept

« DDs to greatly simplify input and calibration coupler

system used on 3-cell cavity

* Low-cost aluminum model allows benchtop investigation
and nice modular configurability

RF simulation by S. Kazakov, FNAL

Monitoring signal

Input signal

RF monitor-2

Mock-up WG loop RF feed 1
with launchers and attenuators

NOoO R WON =~

Single attenuator
90-bend

Spacer waveguide
Tuner equivalent
DD coupler
Double attenuator
Double launcher
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2& Future and outlook for Traveling wave

Traveling wave structures are an attractive prospect for compact, high-gradient linacs
offering ~40% improvement in accelerating efficiency with mature Nb technology

Successful proof-of-principle trials

Technical hurdles remain
« Cold-test at high-power to demonstrate pure traveling wave mode in 3-cell prototype

« Demonstration of coupling/tuning methods
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Other practical questions
» How to clean/process these cavities? Flanged waveguide loops?
 Fabrication: feasible weld maps for larger-scale structures?

* Handling?

The good news: these appear to be “easier” problems!
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Other practical questions
» How to clean/process these cavities? Flanged waveguide loops?
 Fabrication: feasible weld maps for larger-scale structures?

* Handling?

The good news: these appear to be “easier” problems!

Pathway towards 70 MV/m!
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Summary & future outlook
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{& Summary and outlook for SRF structures

Nb structure optimizations can also deliver immediate
performance benefit to next generation machines without
waiting for surface processing methods to mature further
* Novel SRF structures are enabling technologies for:

« High gradient devices: linear higgs factories, compact devices

* Next-generation SRF for RCS to reduce beam impedance/instabilities

FERMINATIONALACCELERATORLABORATORY

 Improved facility efficiency and flexibility is a key component of
accelerator stewardship, expanding experimental reach

« Consistent R&D is critical to ensure these options are well
developed for adoption by future projects

Thank you! Questions?
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