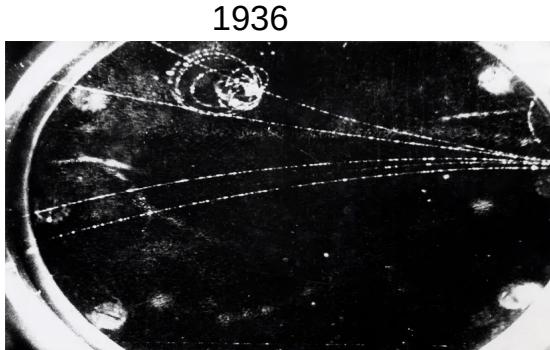
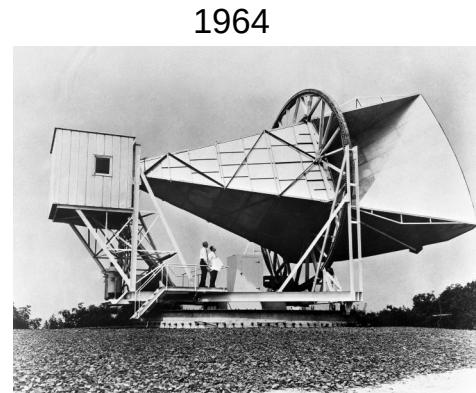
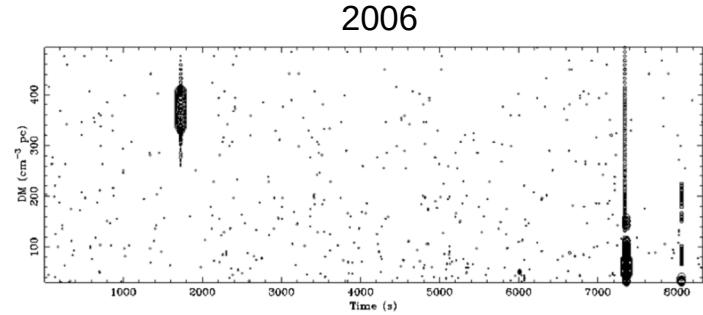


Embracing the Unexpected: AI Methods for Surprise Discoveries in Particle Physics

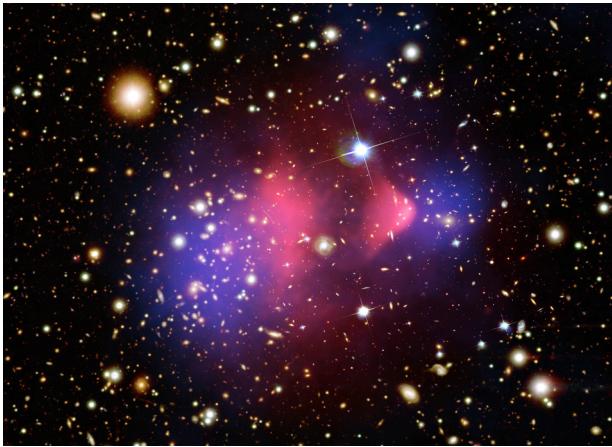


2026?

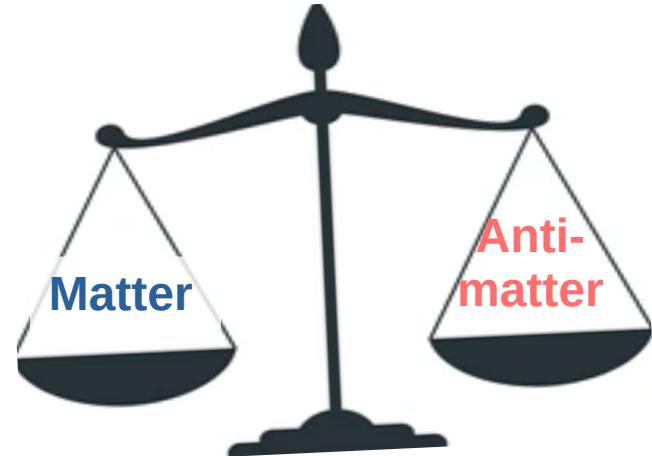
Oz Amram
Jan. 20th, 2026
SLAC Seminar

Lots of Questions

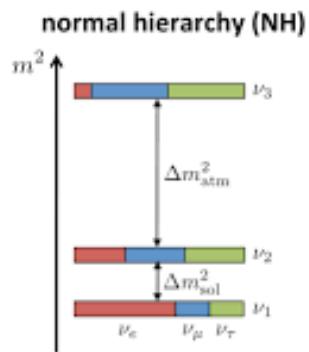
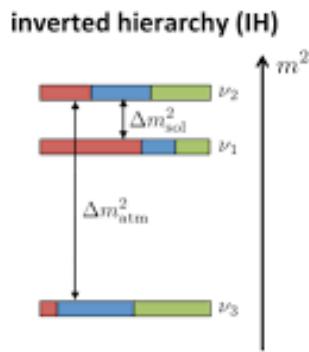
Dark Matter?



Baryogenesis?



Neutrino
Mass?



Oz Amram (Fermilab)

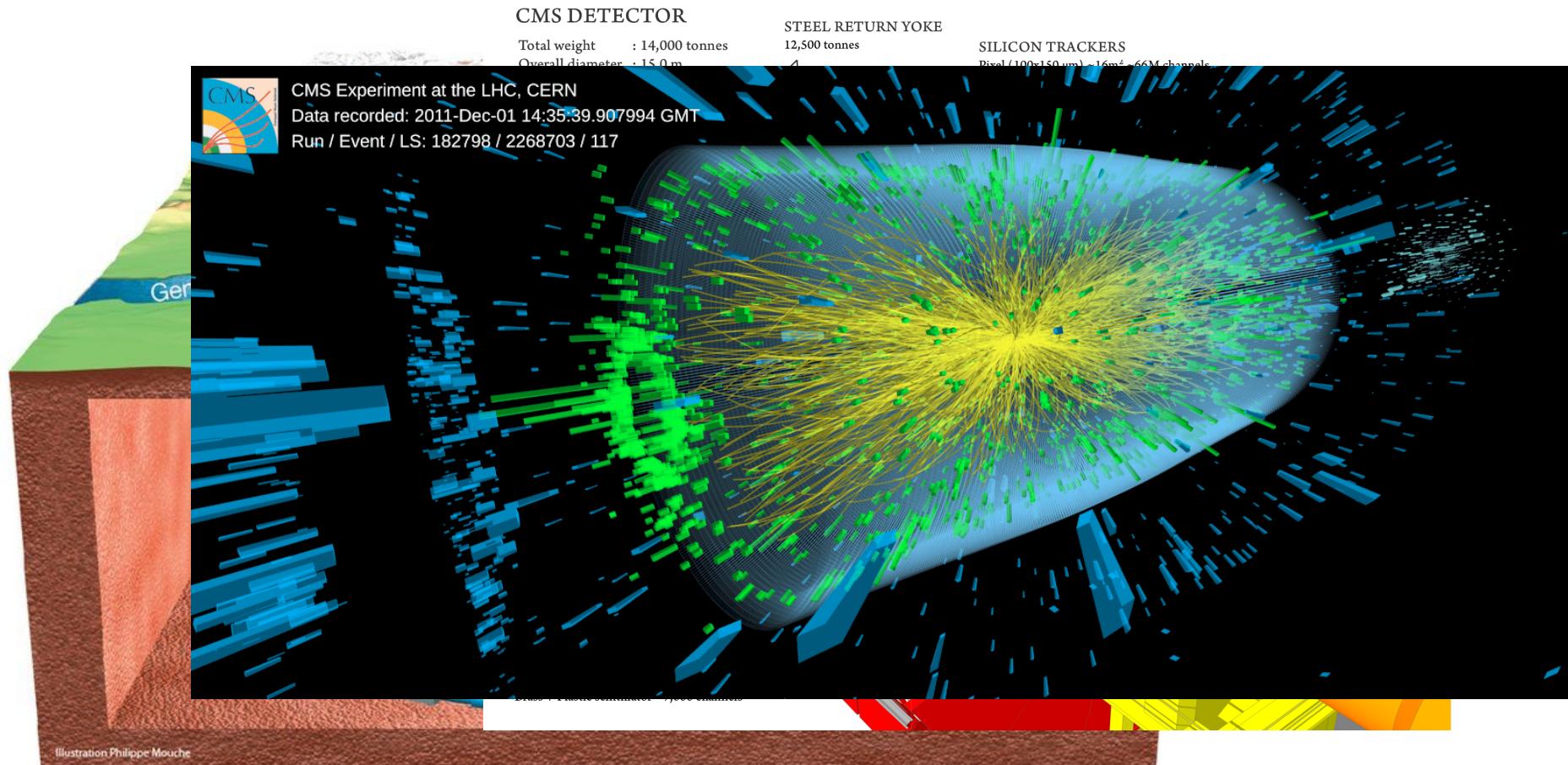
Hierarchy
Problem?

And many more...

Strong CP
problem?

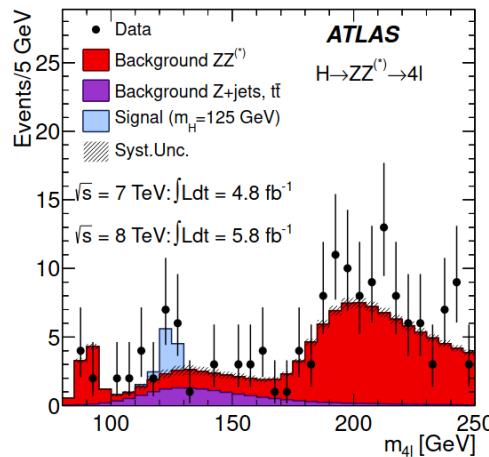
Origin of SM
parameters?

LHC & CMS



2012: A watershed

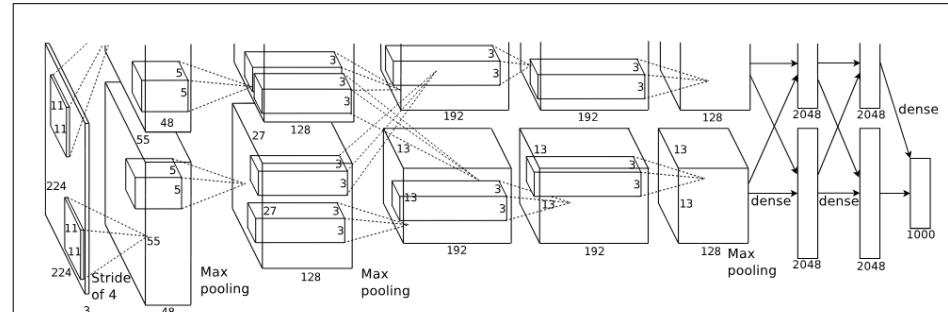
Higgs Discovery



Fills in the last missing piece of the Standard Model

→ No more clear discovery targets!

AlexNet



Kickstarts deep learning AI/ML revolution

2012: A watershed

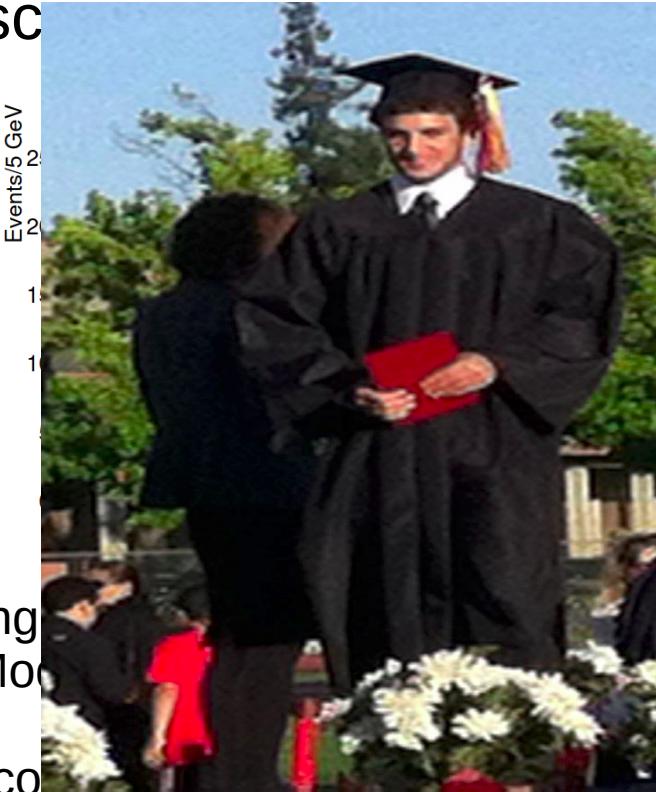
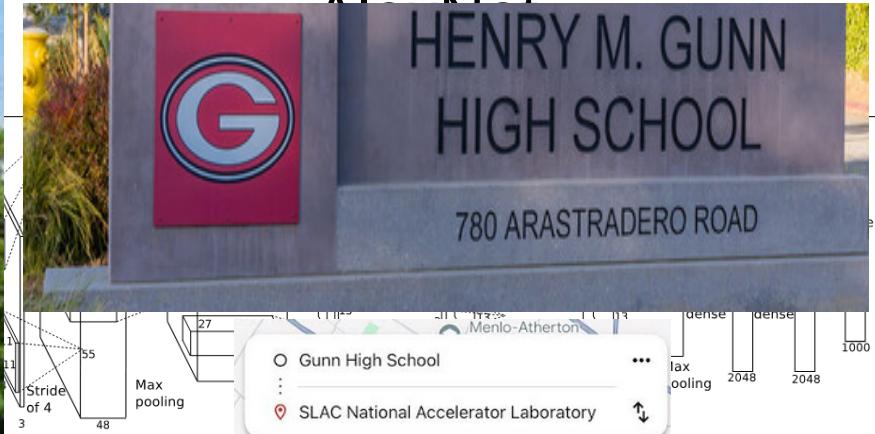
Higgs Disc

CMS $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}, L = 5.3 \text{ fb}^{-1}$
GeV

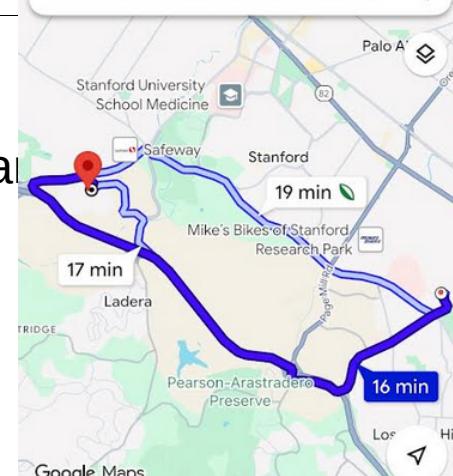
Also the year
I graduated
from Gunn
High School!

Fills in the last missing
Standard Model particle

→ No more clear discovery targets



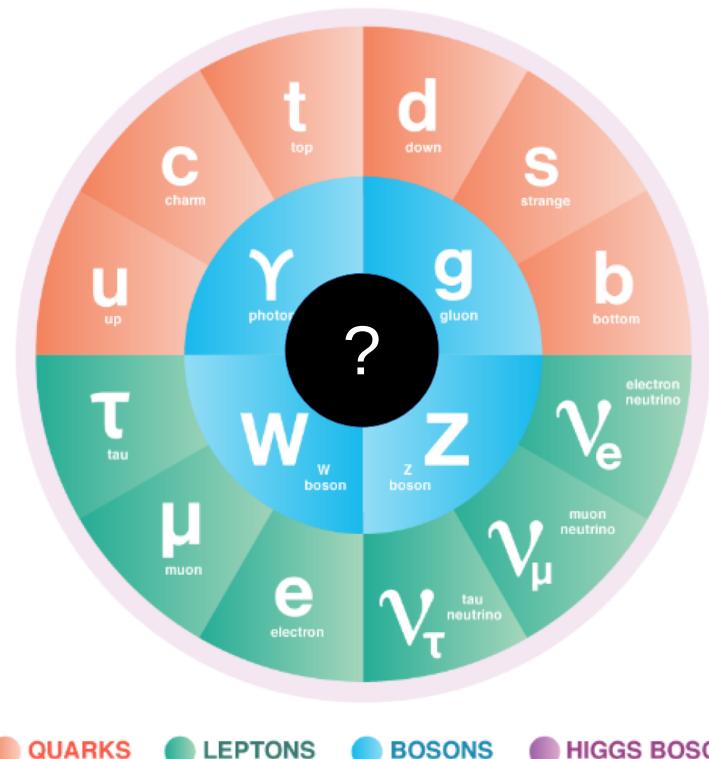
Kickstart ML



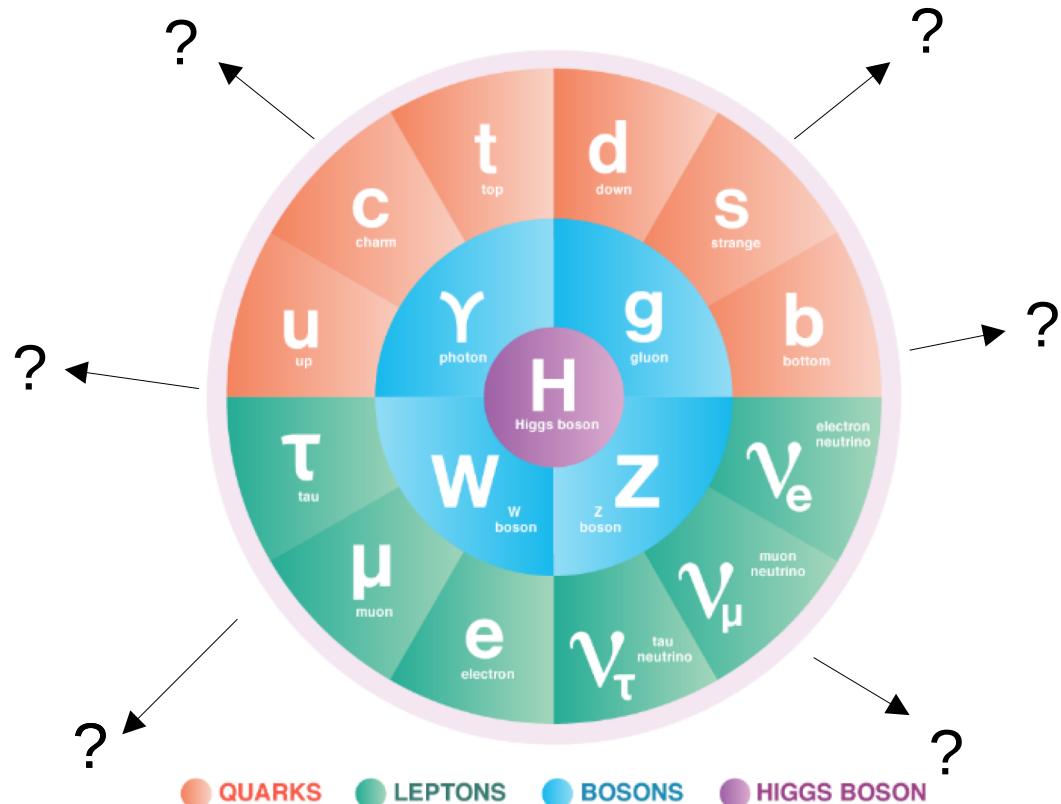
Oz Amram (Fermilab)

Before & After

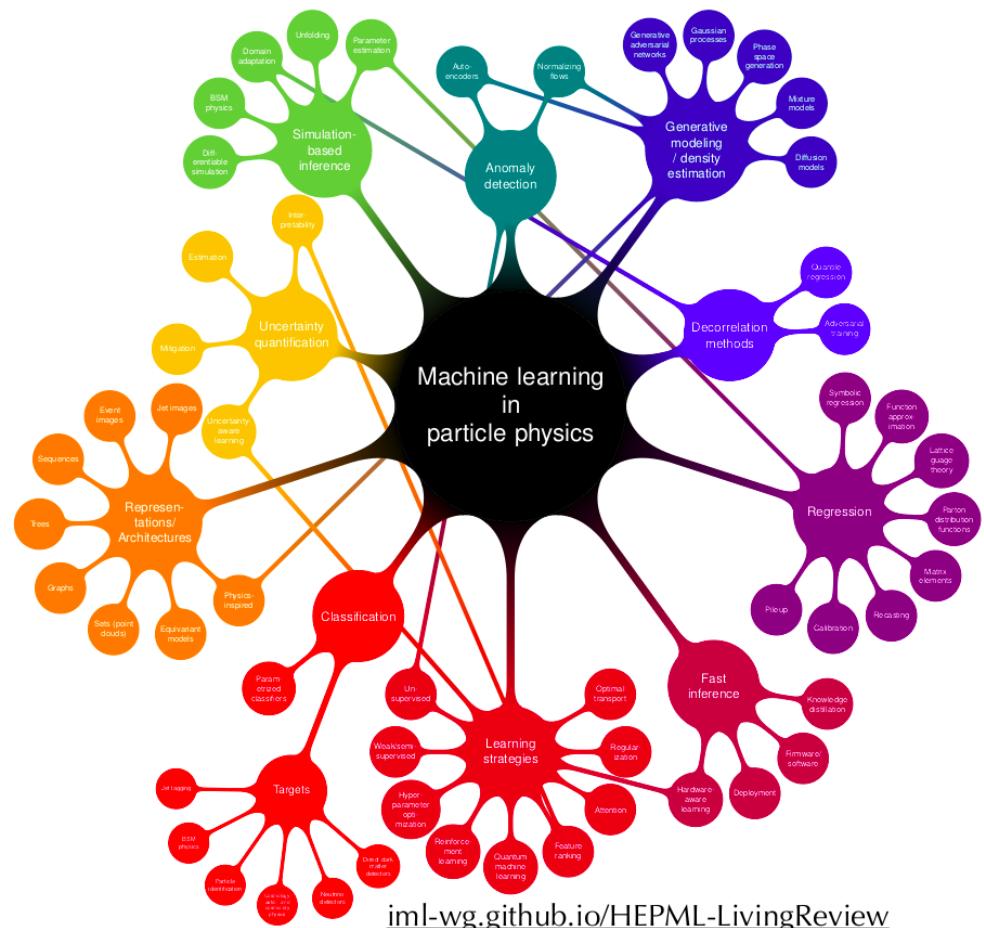
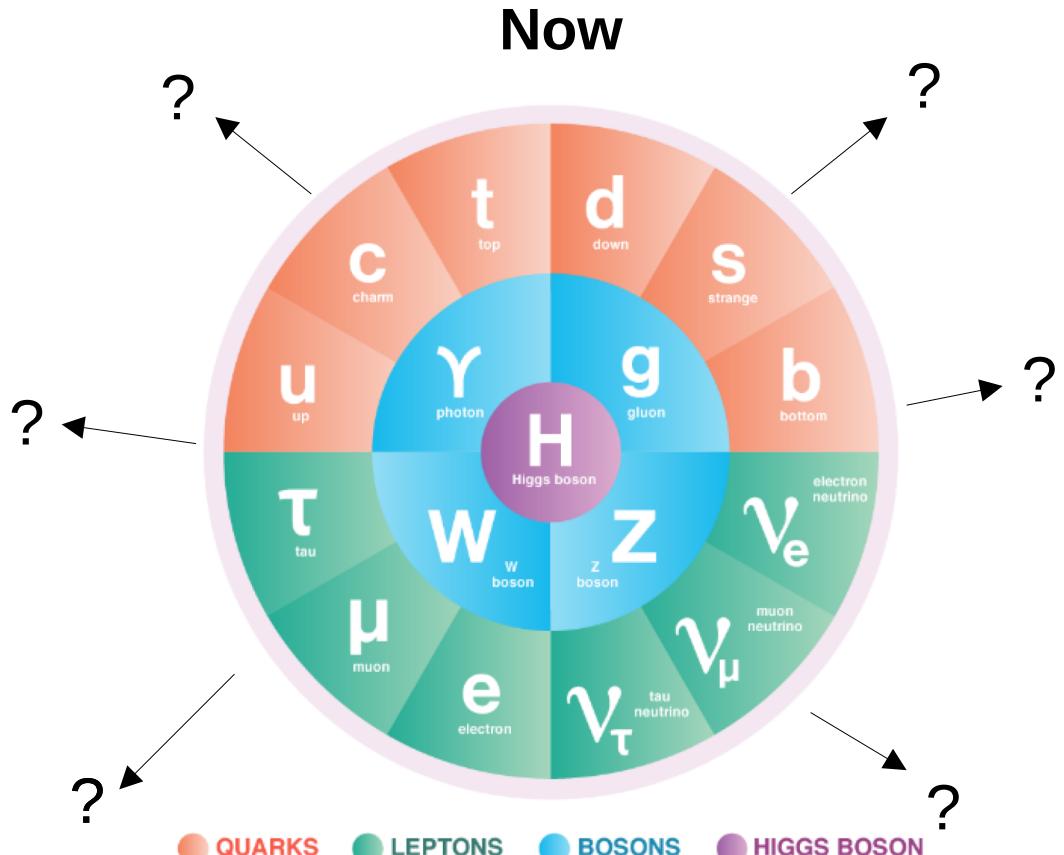
Pre-2012



Now



Before & After



Lacking clear targets, we should cast our net as wide as possible

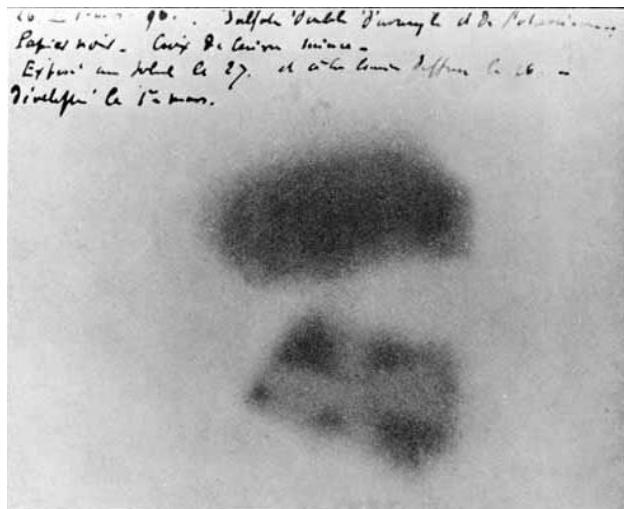
And hope to get ‘lucky’!

“Luck is when preparation meets opportunity”

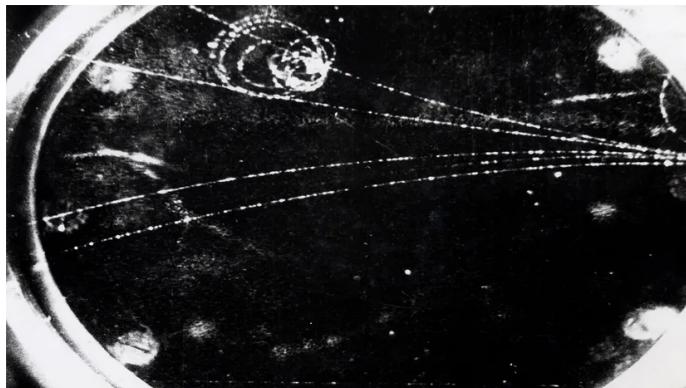
How can we prepare?

Surprise Discoveries in Fundamental Physics

Radioactivity
(1896)

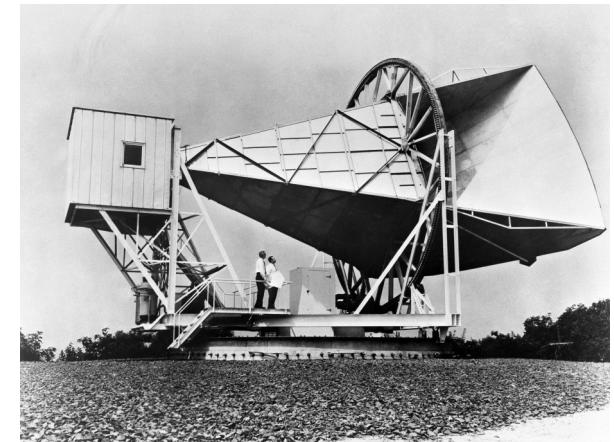


Muon
(1936)



“Who ordered that?” – I.I. Rabi

Cosmic Microwave
Background (1964)



Arguably many others as well!

Kaon, Parity Violation, CP violation, neutrinos, neutrino oscillation, dark energy, ...

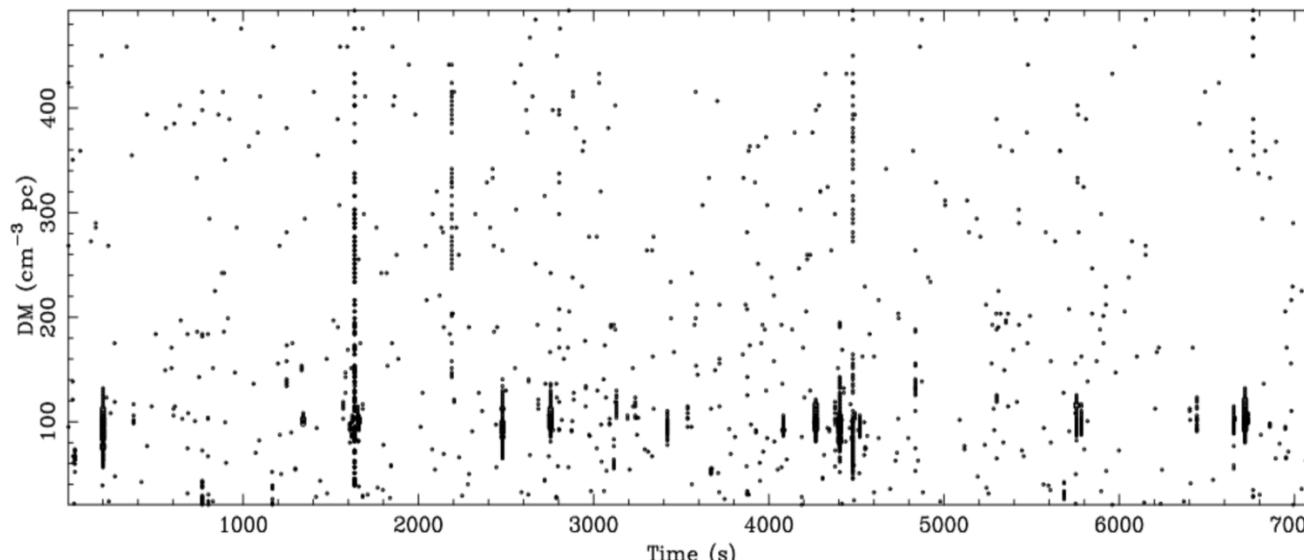
History of a ‘lucky’ discovery

History of a ‘lucky’ discovery

- In 2006 an undergrad was tasked with looking through archival data from the Parkes telescope to look for bright sources

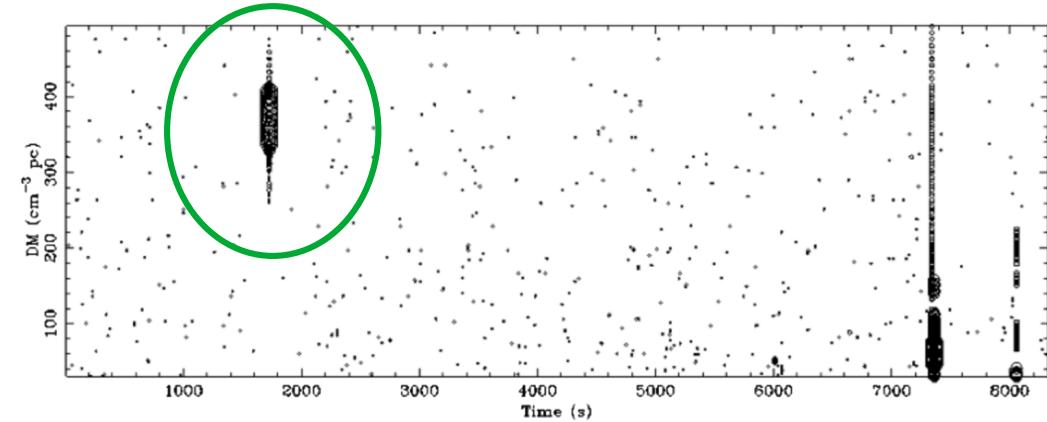
History of a ‘lucky’ discovery

- In 2006 an undergrad was tasked with looking through archival data from the Parkes telescope to look for bright sources
- Computationally limited, they analyzed a portion of the data each week and inspected the results ‘by eye’
 - ~1 plot a week, then discussed with their advisor

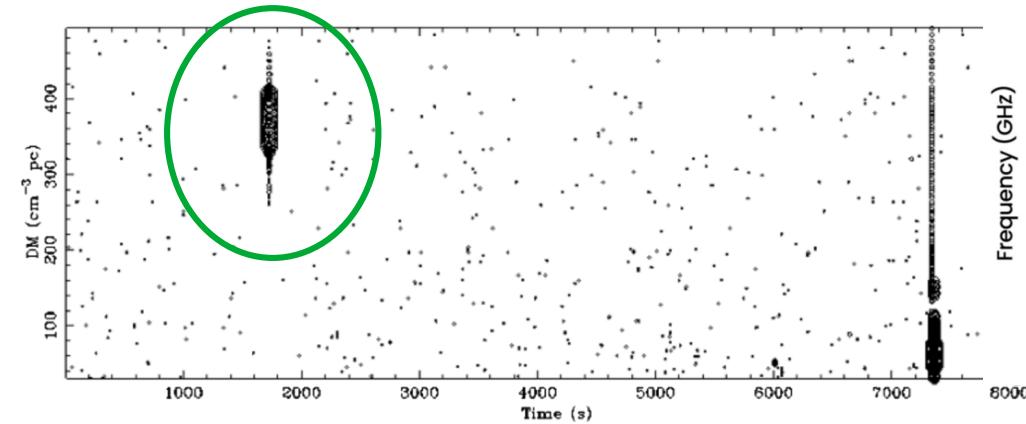
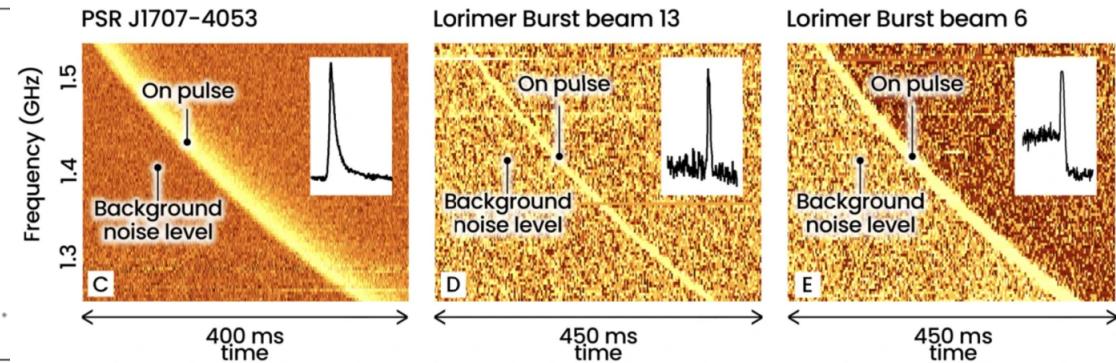


Features mostly known sources / backgrounds

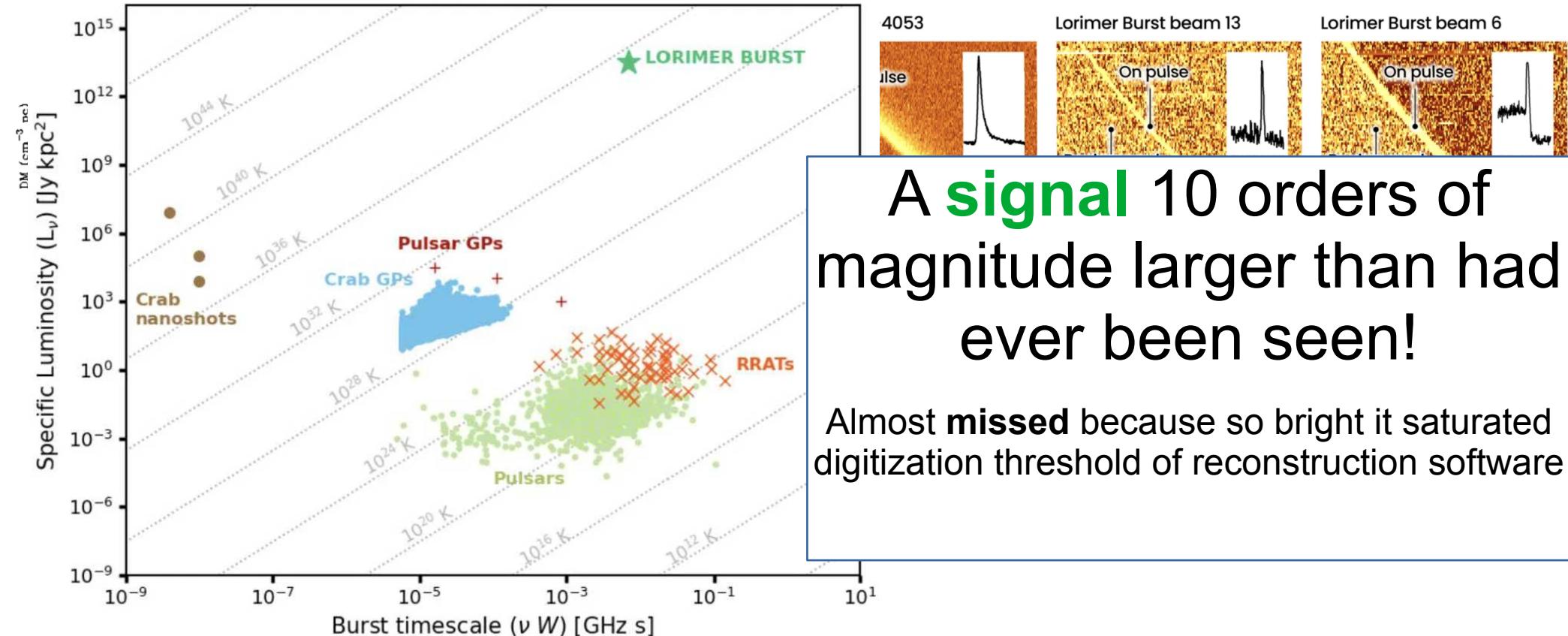
An Anomaly!



An Anomaly!

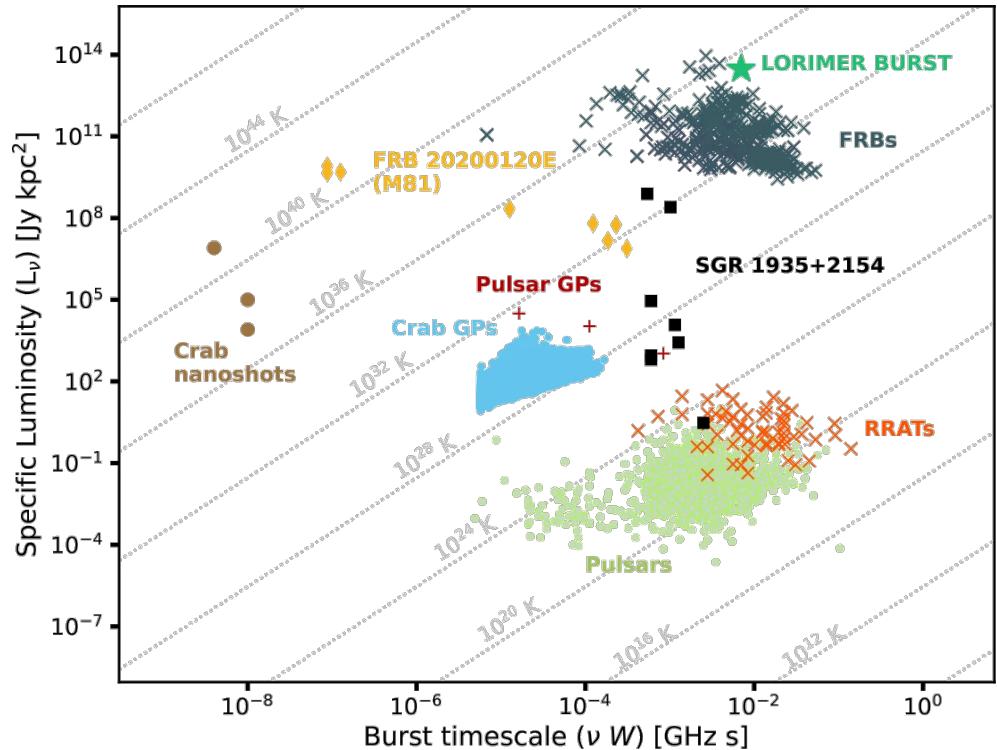


An Anomaly!



Confirmation

- This first discovery generated community interest & skepticism
- A few years later other ‘Fast Radio Bursts’ (FRB) were found by HTRU collaboration
- **Today:** several FRB’s per day recorded
- Their astrophysical origin is still poorly understood

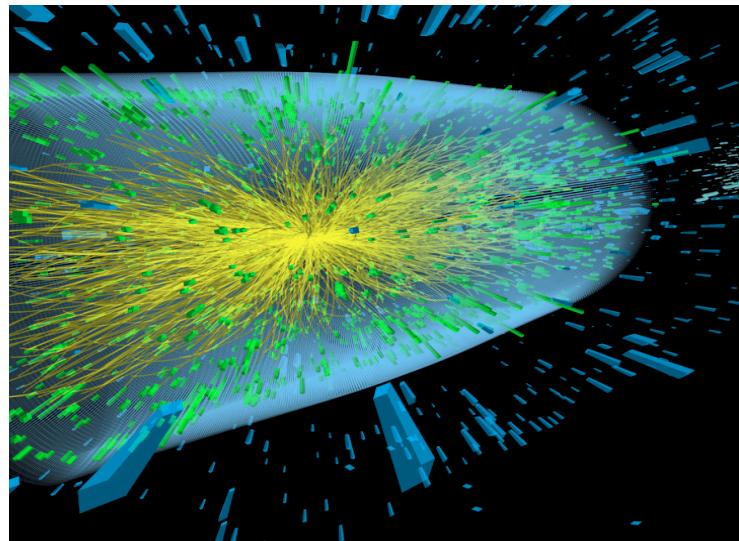


Ingredients of a Serendipitous Discovery

- High quality scientific instrument/data
- Clear indication of outlier (luminosity)
- Understanding of backgrounds
- Short analysis timescale (weeks not years)
- A curious young scientist (undergrad) inspecting the data

Ingredients of a Serendipitous Discovery

- High quality scientific instrument/data
- Clear indication of outlier (luminosity)
- Understanding of backgrounds
- Short analysis timescale (weeks not years)
- A curious young scientist (undergrad) inspecting the data



How can we scale these elements to modern massive, complex experiments??

Ingredients of a Serendipitous Discovery

- High quality scientific instrument/data
- Clear indication of outlier (luminosity)
- Understanding of backgrounds
- Short analysis timescale (weeks not years)
- A curious young scientist (undergrad) inspecting the data

How can we scale these elements to modern massive, complex experiments??

Ingredient

AI Technology

- High quality scientific data
- Clear indication of outlier
- Understanding of backgrounds
- Short analysis timescale
- A curious young scientist inspecting the data

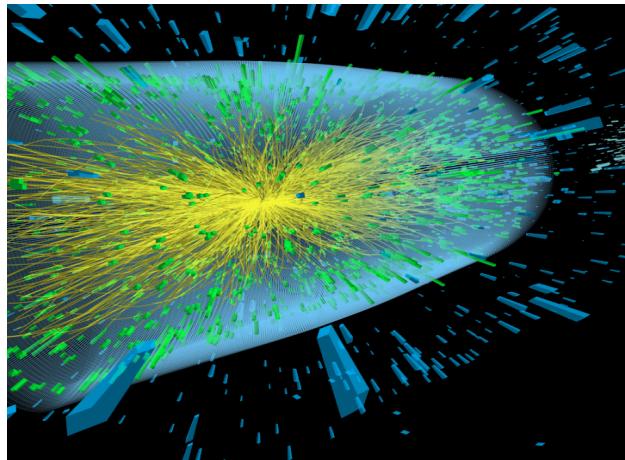
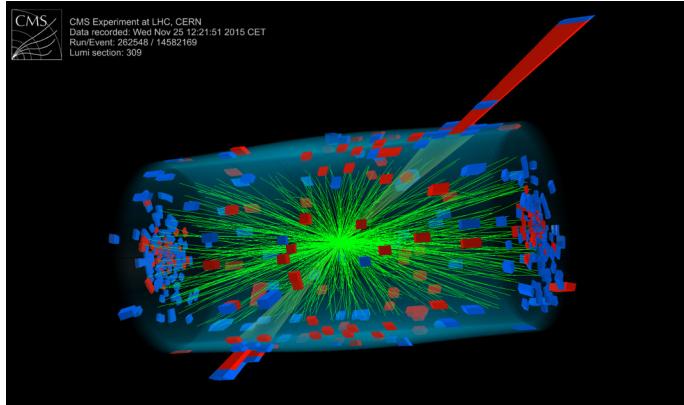
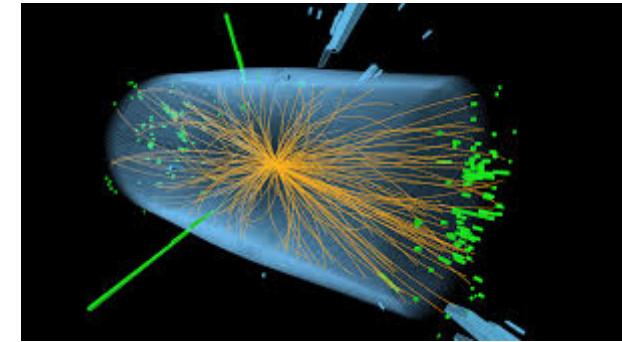
Ingredient

- High quality scientific data
- Clear indication of outlier
- Understanding of backgrounds
- Short analysis timescale
- A curious young scientist inspecting the data

AI Technology

Anomaly Detection

Anomaly Detection



How do you know which of these is ‘anomalous’?

Anomaly Detection

The LHC Olympics 2020

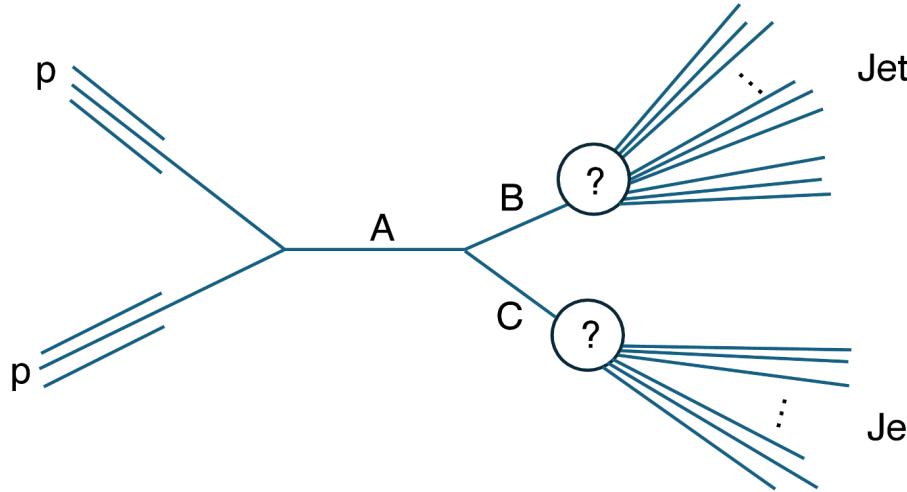
A Community Challenge for Anomaly Detection in High Energy Physics

- Focus on a single topology at a time
- Entirely **data-driven**
- Novel ML methods to reduce bkg

arXiv: [2101.08320](https://arxiv.org/abs/2101.08320)

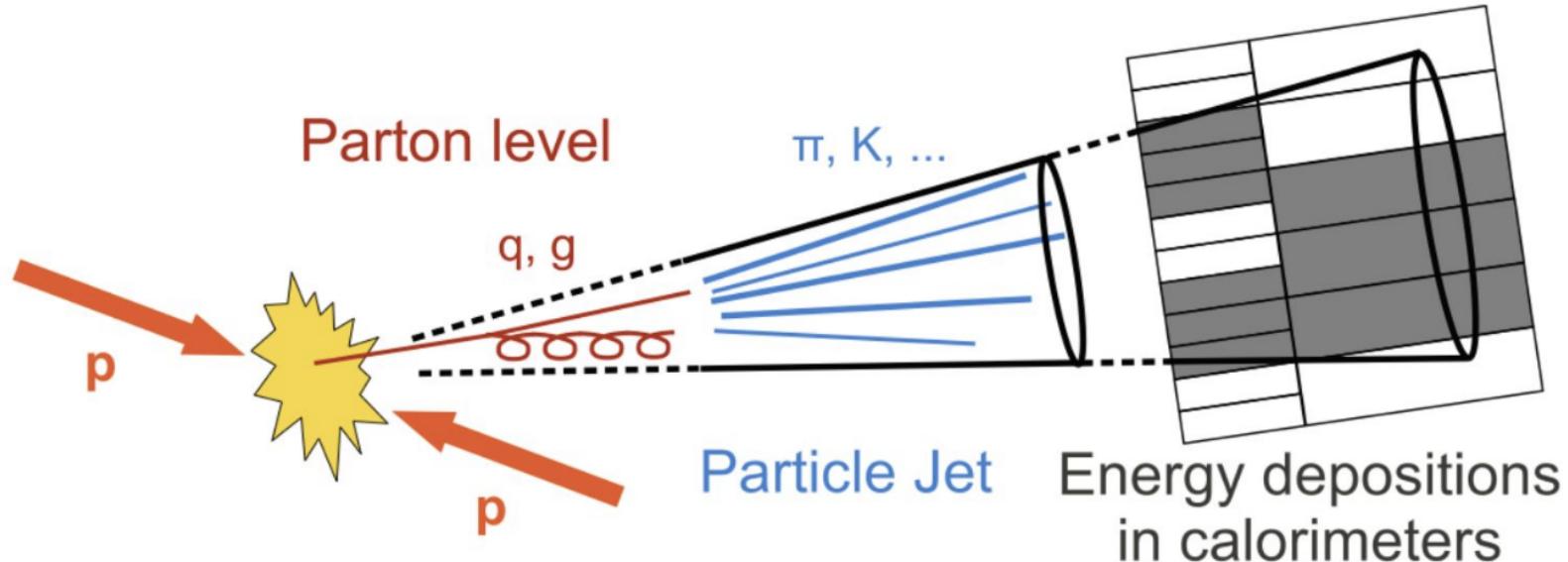
Physics result:
[arXiv:2412.03747](https://arxiv.org/abs/2412.03747)
ML details:
[arXiv:2512.20395](https://arxiv.org/abs/2512.20395)
Jet Uncertainties:
[arXiv:2507.07775](https://arxiv.org/abs/2507.07775)

CMS Anomaly Search



- **First** CMS search to use anomaly detection
- Heavy resonance (A) \rightarrow daughters B and C \rightarrow 2 jets
- Employed **five** separate anomaly detection methods!

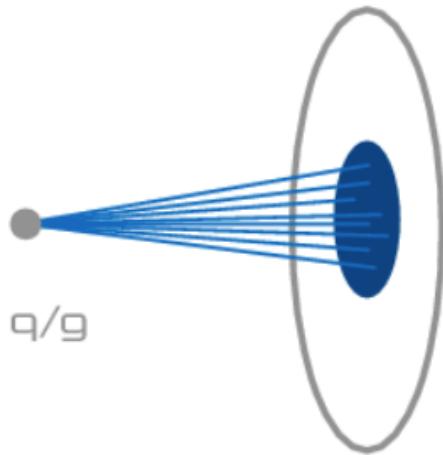
Jets



Sprays of $O(50)$ particles produced via
strong force

A playground for HEP-ML!

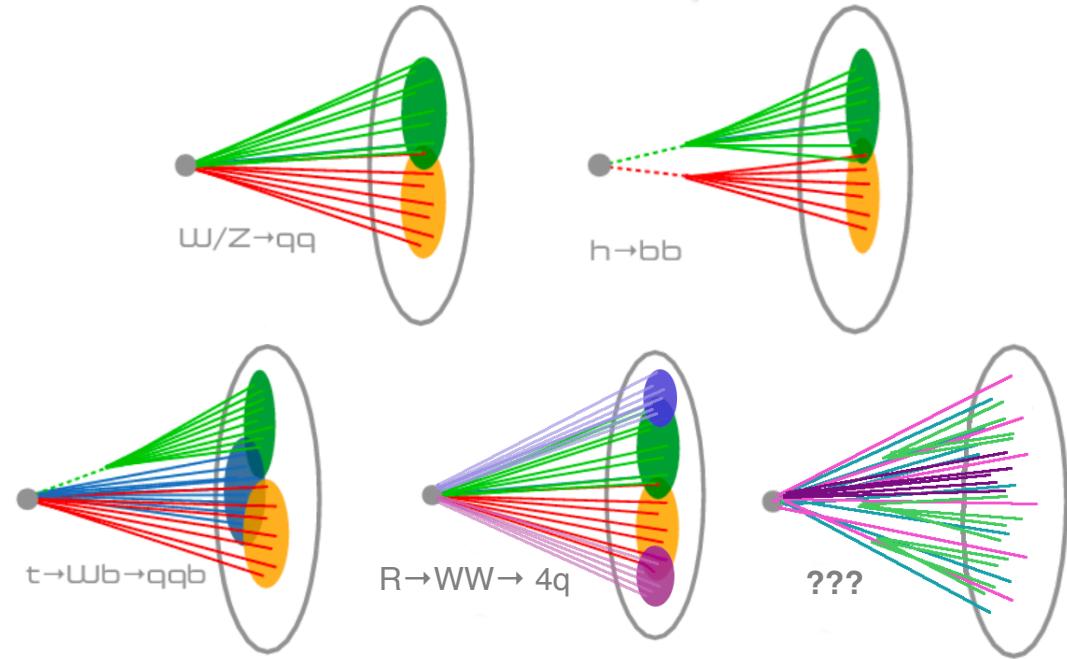
Don't Judge a Jet by its Cover



q/g

Typical jet

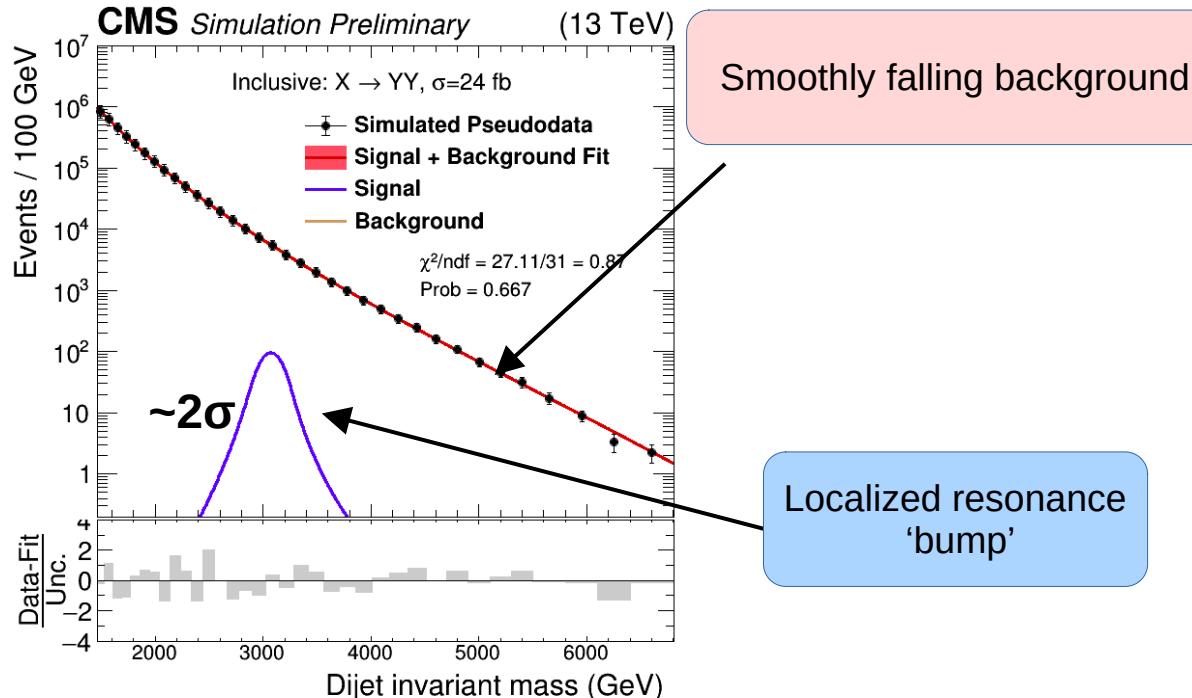
- One central axis (prong)
- From primary vertex
- ...



Anomalous jets

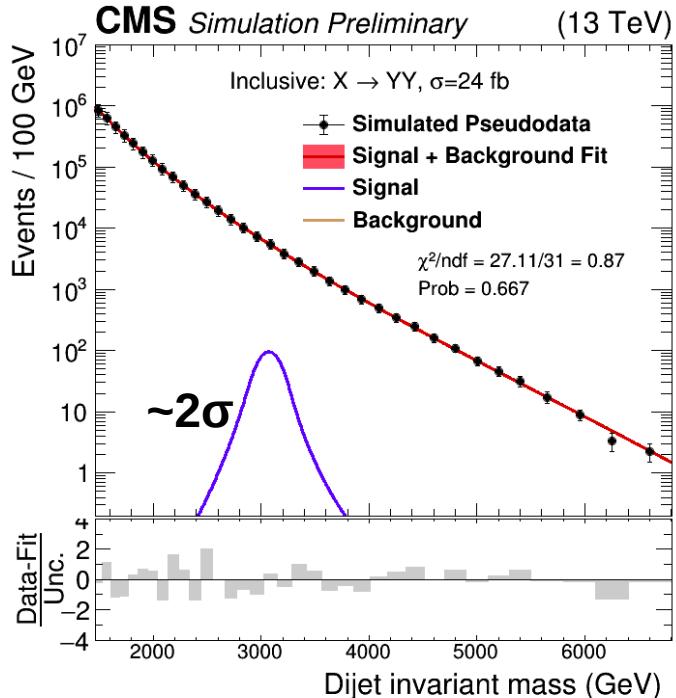
- Multiple prongs
- Displaced vertices
- ???

The Bump Hunt

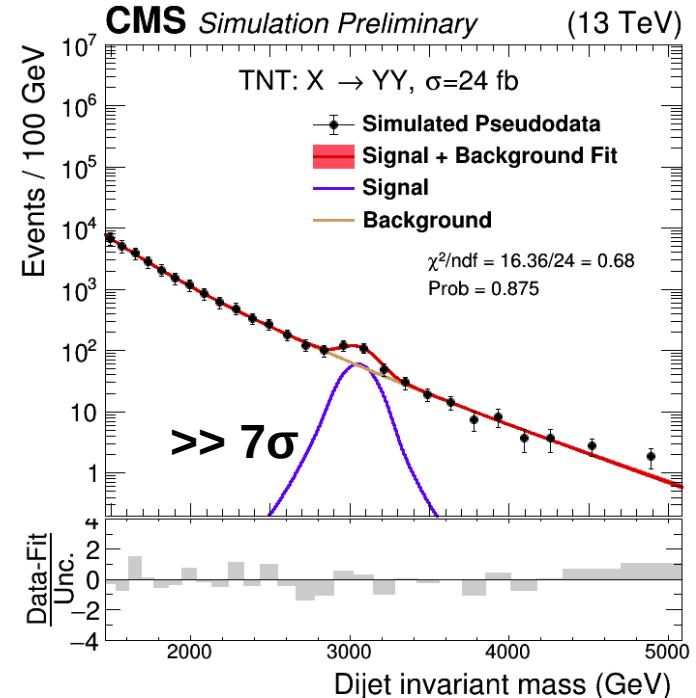


Without any substructure cuts →
Signal swamped by QCD background...

The Bump Hunt



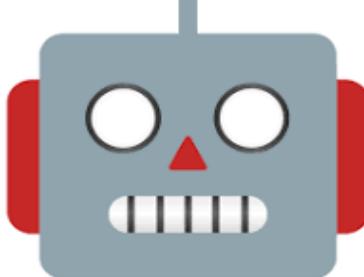
Cut on anomaly score



Anomaly detection finds hidden resonance!

How to identify anomalies?

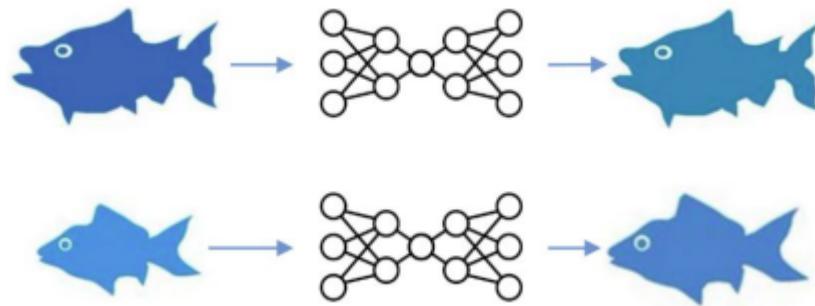
Learn your bkg →
look for outliers



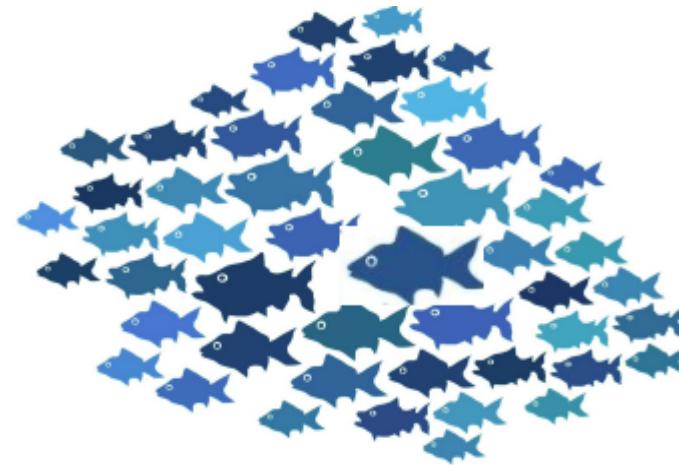
Increasing Model Dependence

Looking for Outliers

Train 'Autoencoder'

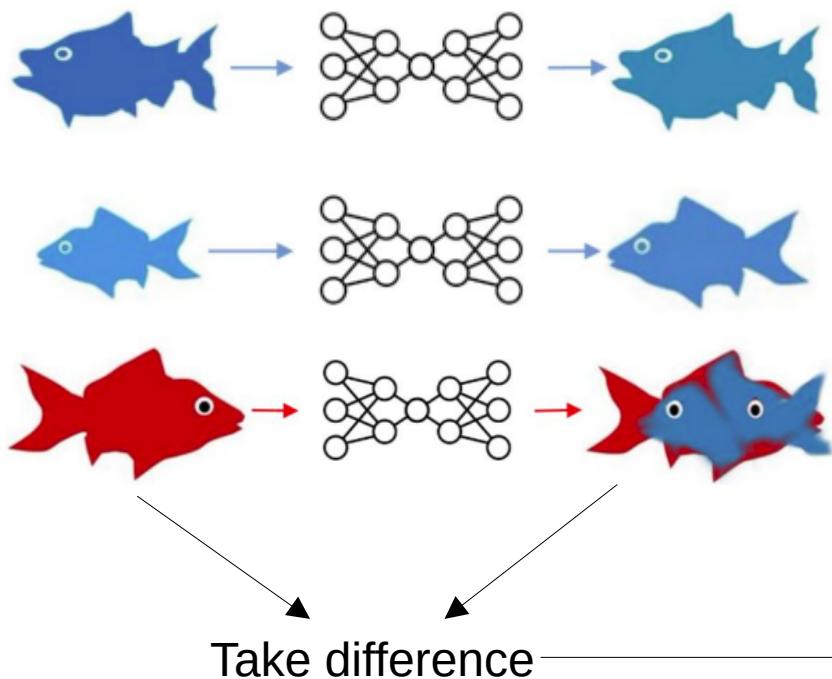


Training Sample from data sideband

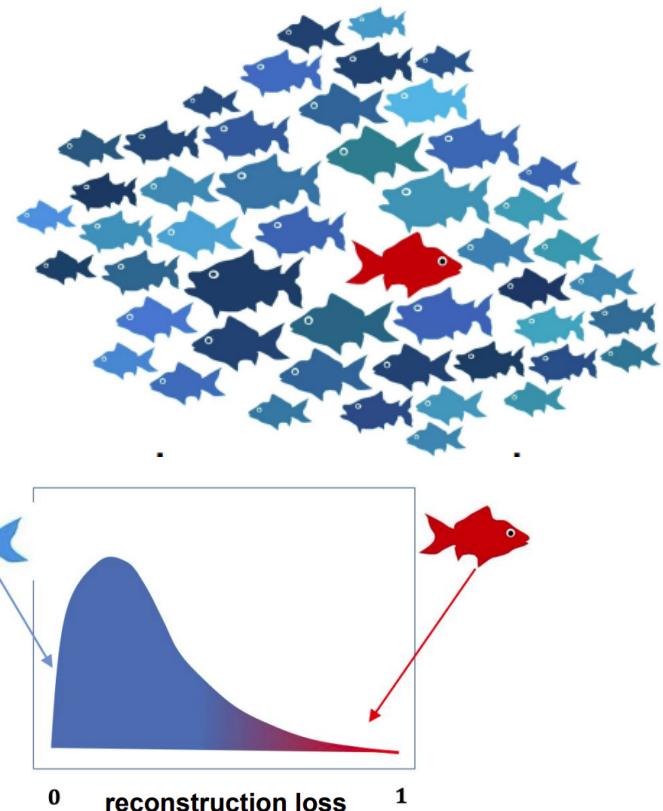


Looking for Outliers

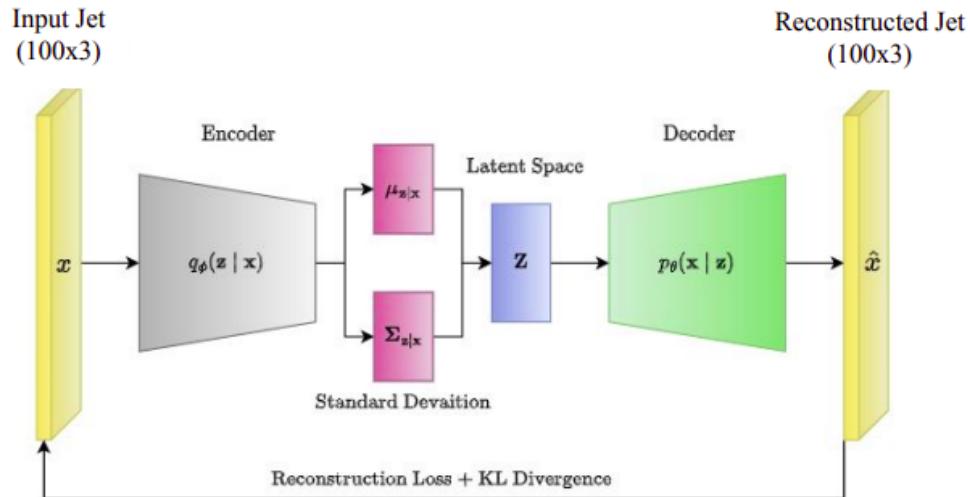
Apply Autoencoder



Data from signal region



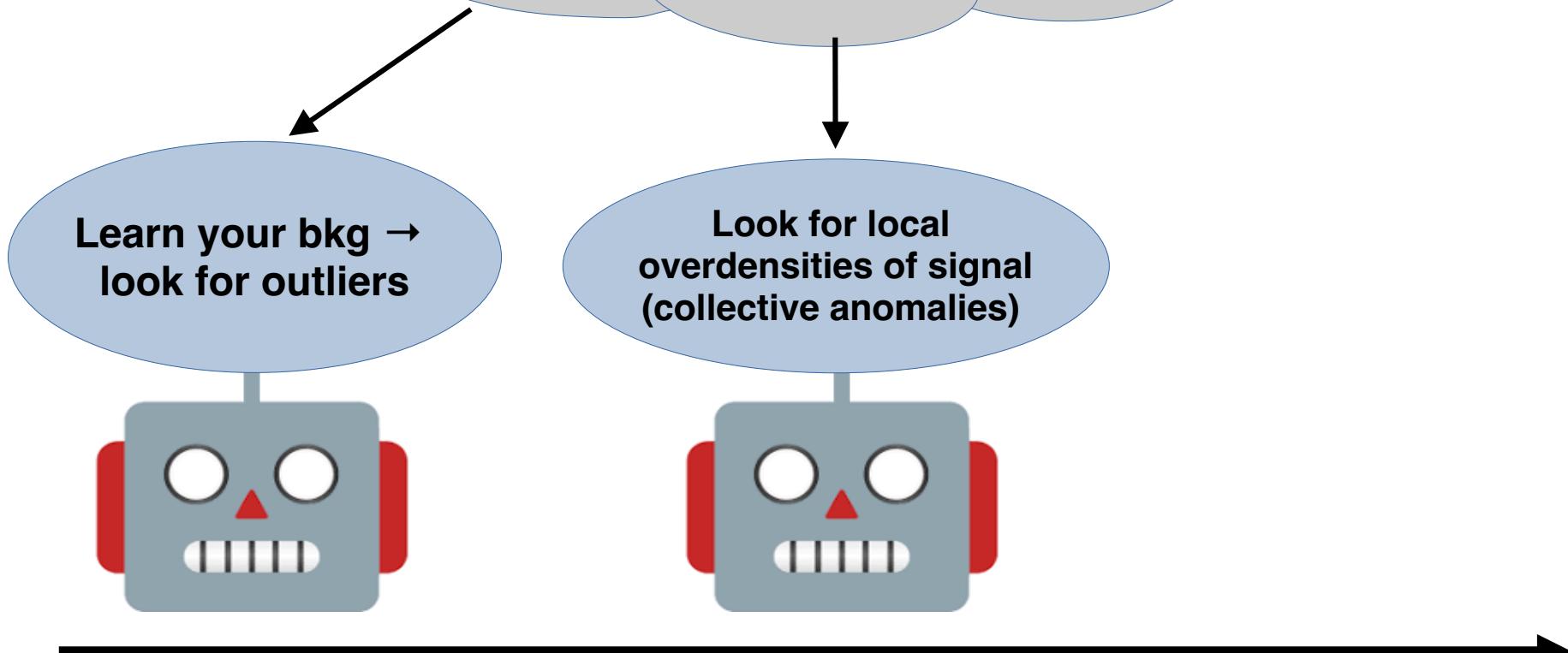
Variational Autoencoder (VAE)



Latent space forced to be Gaussian
thru additional term in loss

- Jet represented by up to 100 highest p_T constituents (p_x , p_y , p_z)
- 100x3 matrix compressed to latent space of size 12
- Trained on jets from data control region

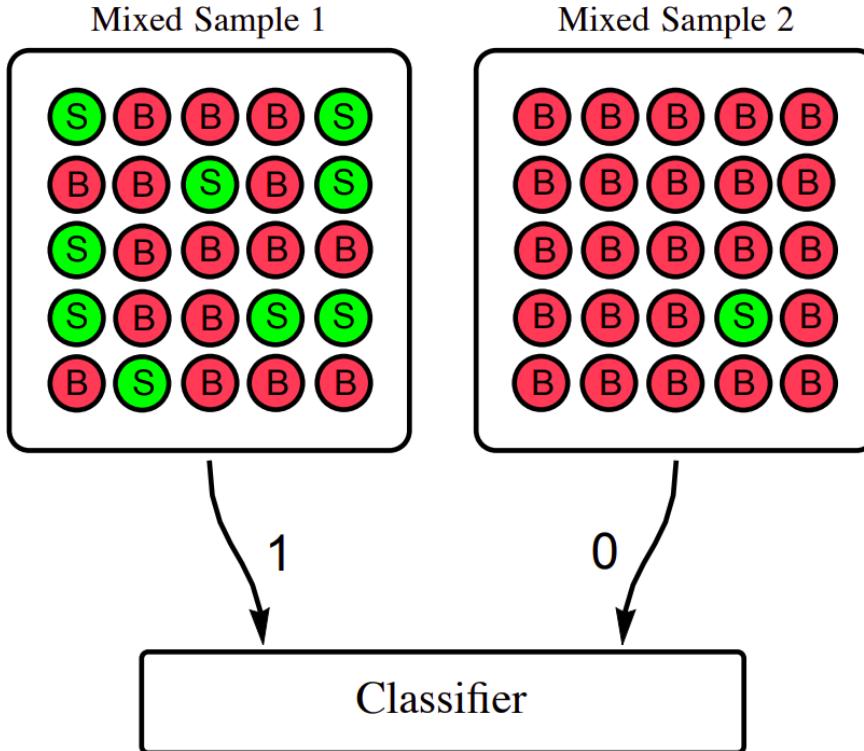
How to identify anomalies?



Weak Supervision

Aka 'Classification Without Labels' (CWoLa)

Train on two mixed samples



- Train a classifier between **signal-rich** and **background-rich** mixed samples
→ Learns to identify **signal** vs. **bkg**
- Performance changes with amount of **signal** in training data

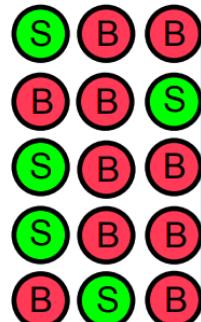
Weak Supervision

Aka 'Classification Without Labels' (CWoLa)

Train on two mixed samples

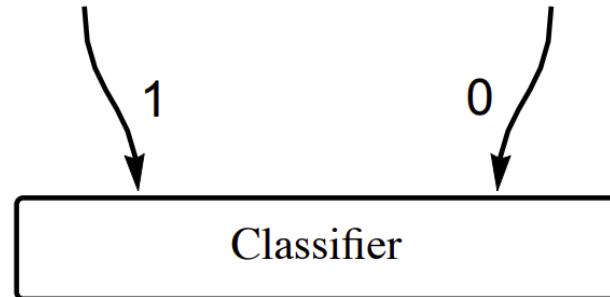
Mixed Sample 1

Mixed Sample 2



How can we construct these mixed samples in data?

→ 3 different methods employed

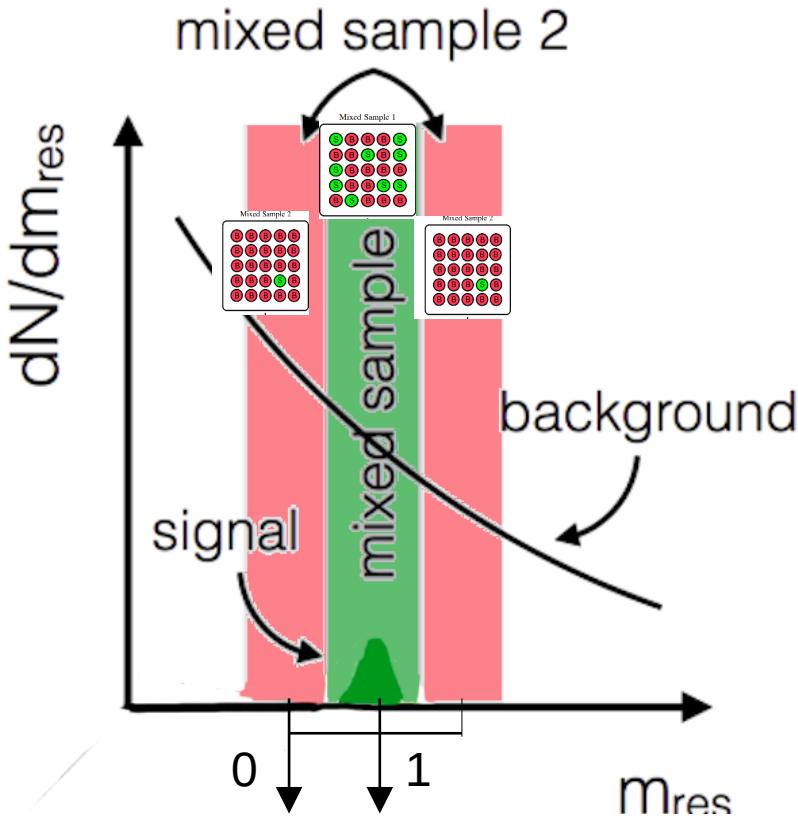


- Train a classifier between **signal-rich** and-

samples
identify

- Performance changes with amount of **signal** in training data

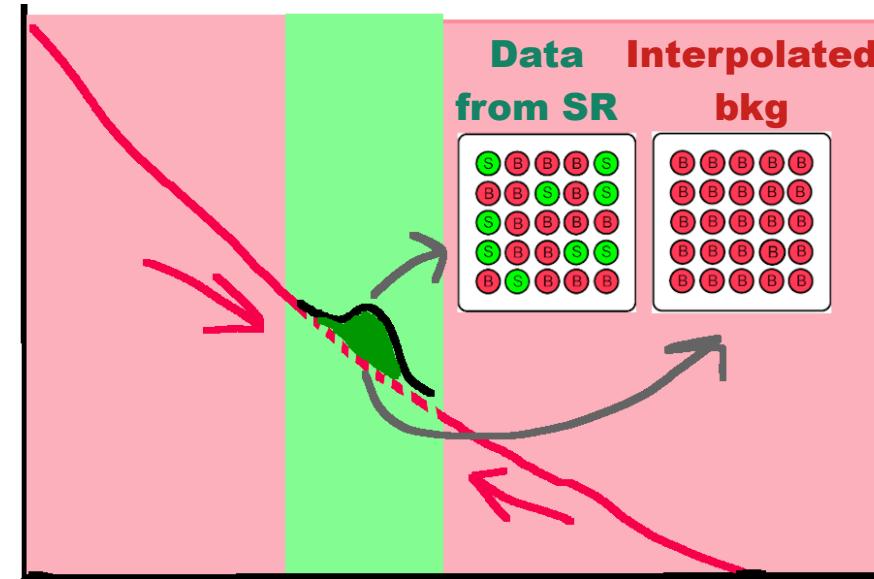
CWoLa Hunting



- Assume **signal** is a **narrow** resonance
- **Guess** a mass window where it lives
 - Train **signal window** vs. **narrow sidebands** using weak supervision
- **Repeat procedure**, scanning over different mass windows
 - (2x6 windows used)
- Need to be careful about correlations btwn feats & mass

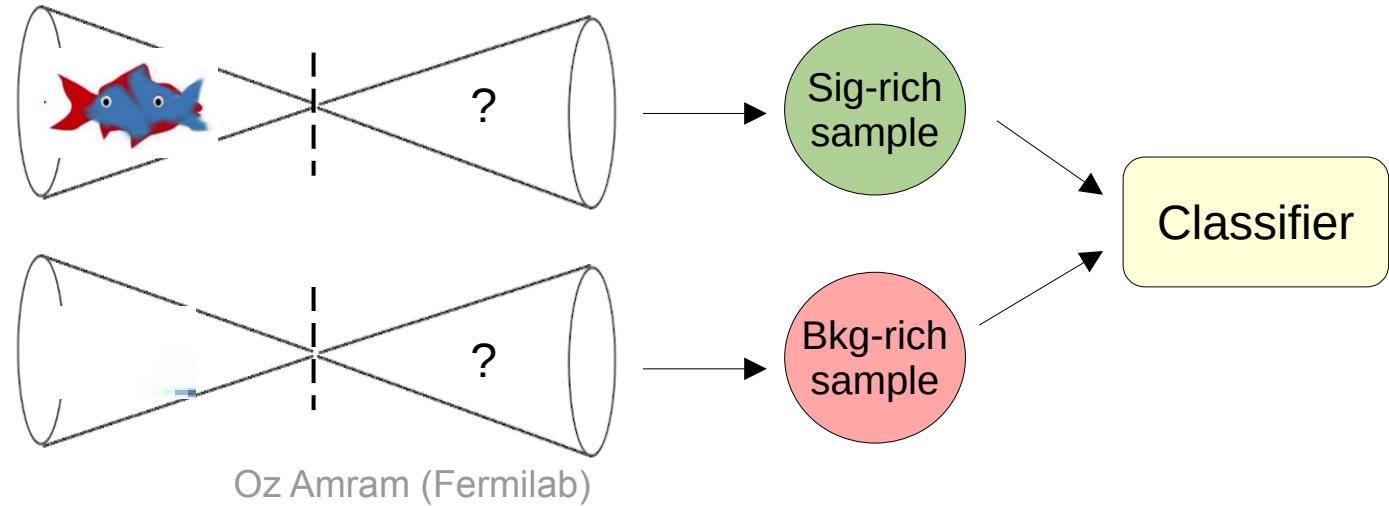
CATHODE
Gen AI to **interpolate** bkg
into SR to construct sample

[Hallin et al 2109.00546]



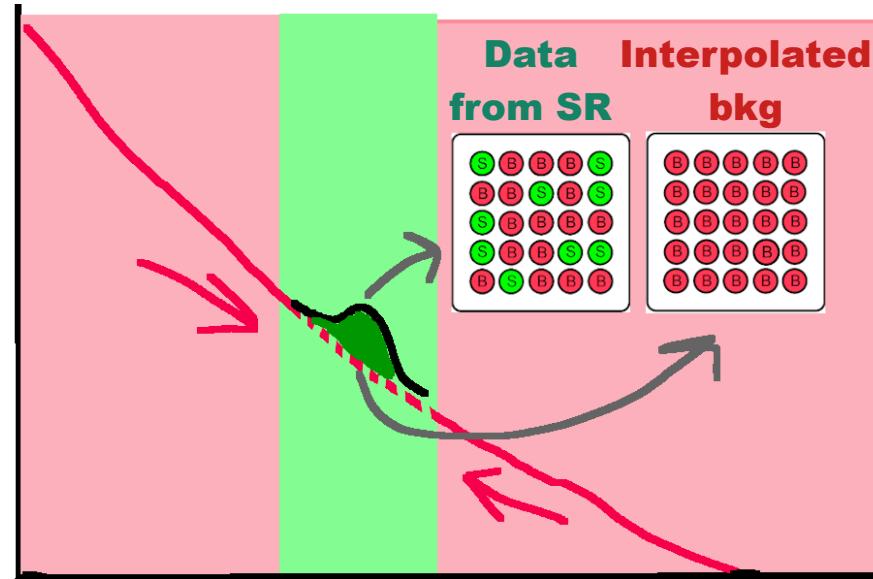
Tag N' Train
Looks for pairs of
anomalies,
purifies samples

[OA & Suarez 2002.12376]



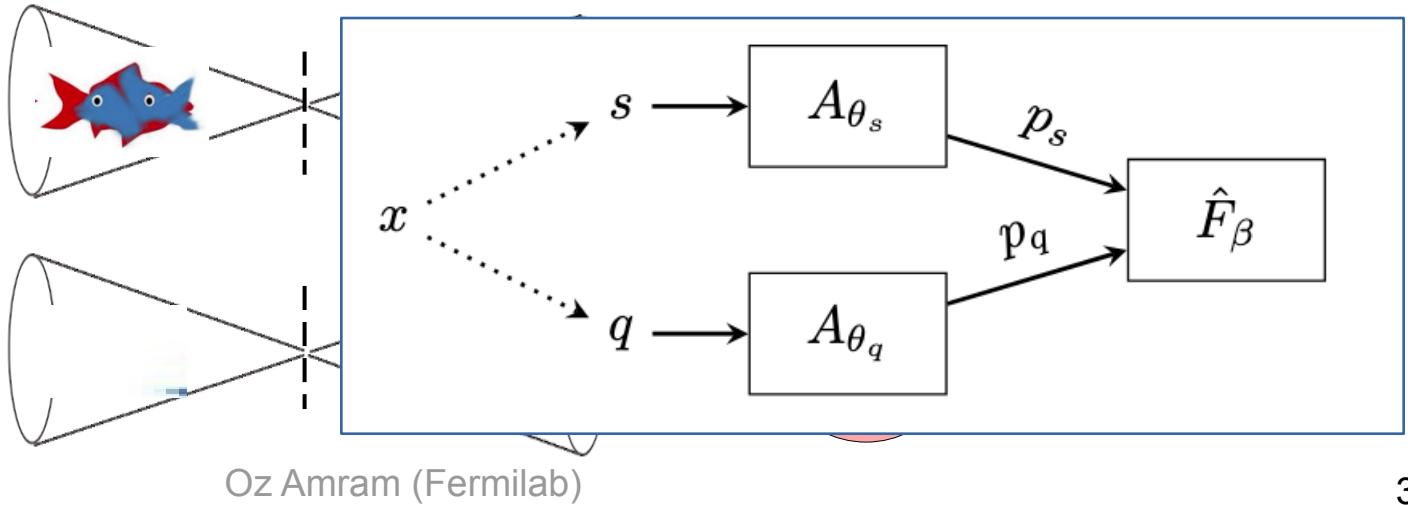
CATHODE
Gen AI to **interpolate** bkg
into SR to construct sample

[Hallin et al 2109.00546]

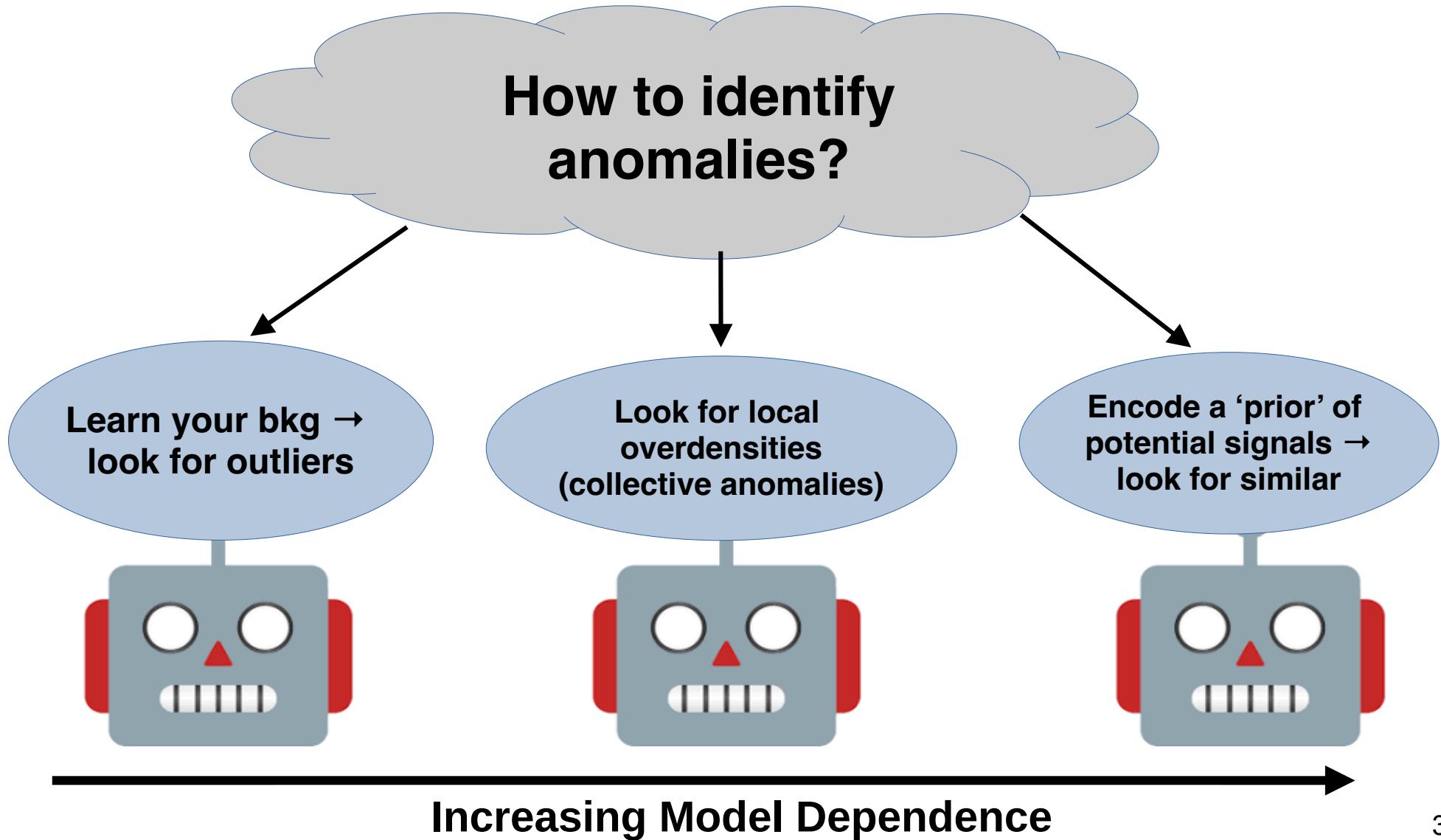


Very similar to
coincident AD
approach
developed at SLAC!

2301.11368

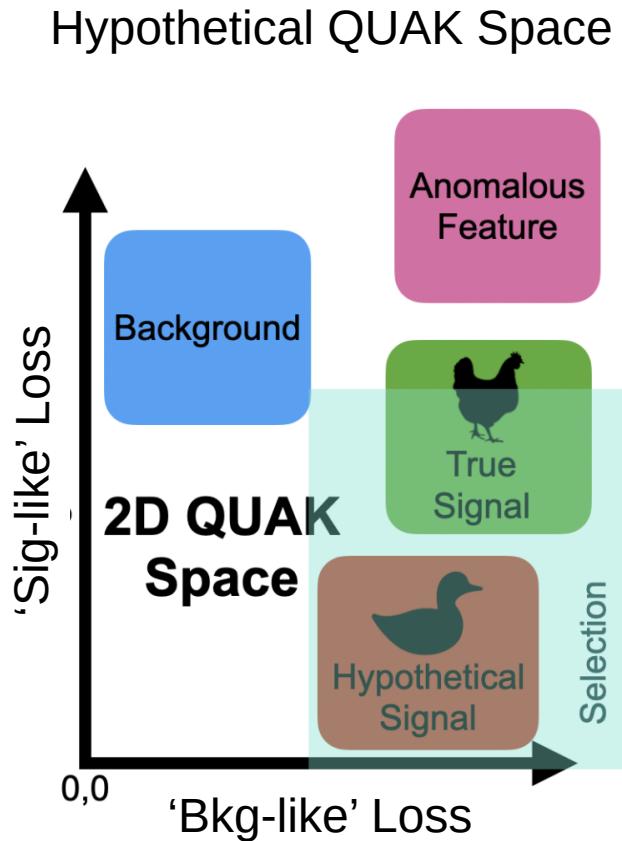


How to identify anomalies?



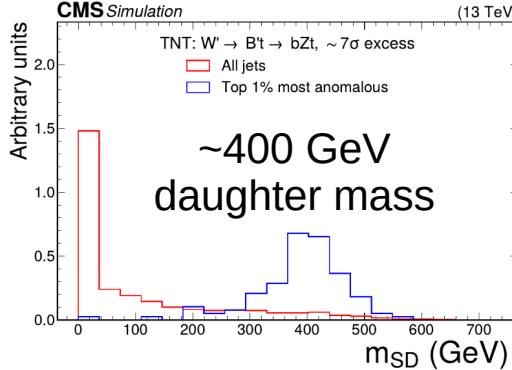
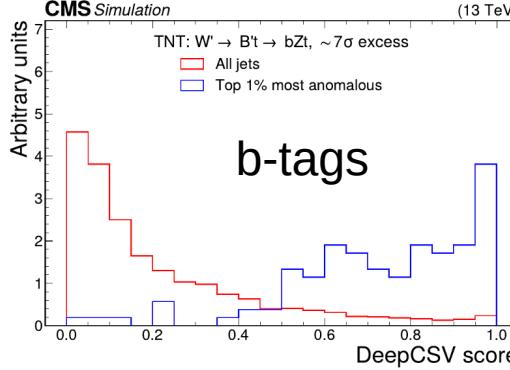
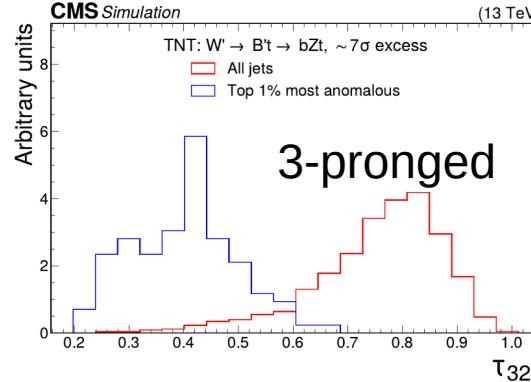
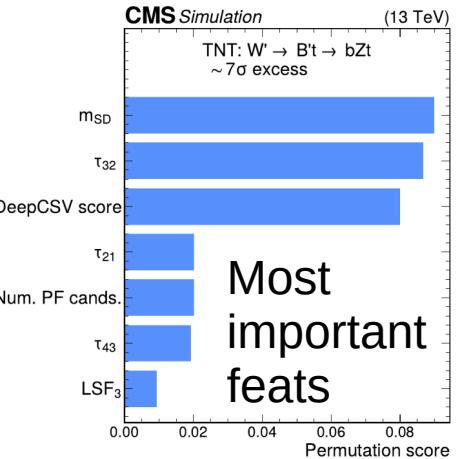
Quasi Anomalous Knowledge (QUAK)

- **Hybrid approach** between fully model-indep. and standard search
- **Encode a prior** on what a potential signal may look like
 - Use an AE trained on a variety of different signal MC's
- Construct 'QUAK space':
 - Loss of signal AE vs bkg AE
- Select events with low sig loss and high bkg loss



Understanding Anomalies

Investigate features of most **anomalous events!**
Compare against **regular events**

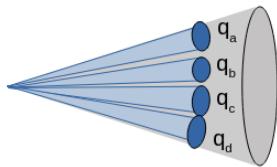
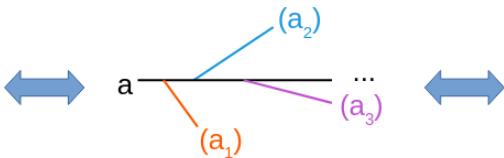
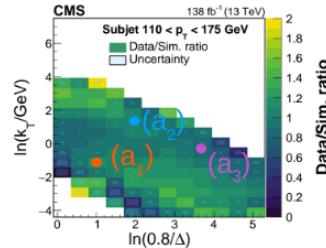


- ✓ Matches characteristics of injected signal

$$W' \rightarrow B't, B' \rightarrow bZ$$
$$M_{B'} = 400 \text{ GeV}$$

Oz Amram (Fermilab)

Uncertainties



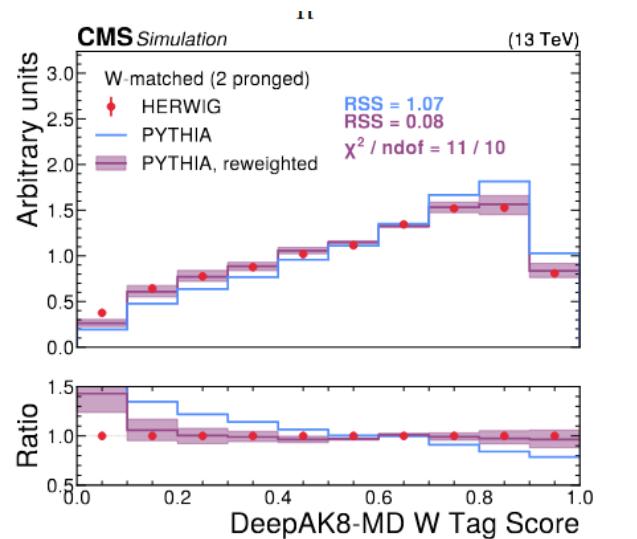
$$W_{\text{jet}} = \prod_{\text{subjets}} W_{\text{subjet}} = \prod_{\text{splittings}} LPR(\text{splitting})$$

Use physics domain knowledge
to factorize problem

Separate paper
[arXiv:2507.07775](https://arxiv.org/abs/2507.07775)

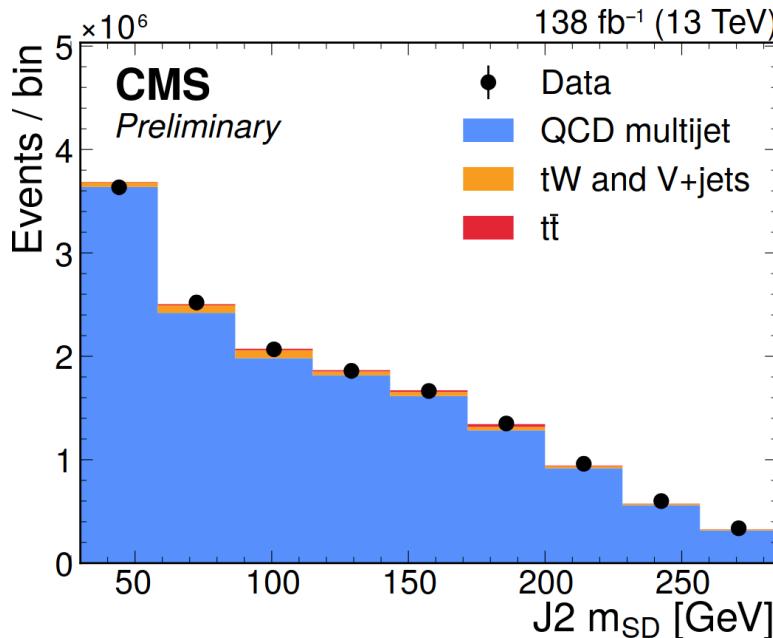
Method now standard
within CMS, employed by
multiple (5+) analyses!

Developed novel procedure
to calibrate AI-classification
of anomalous jets!



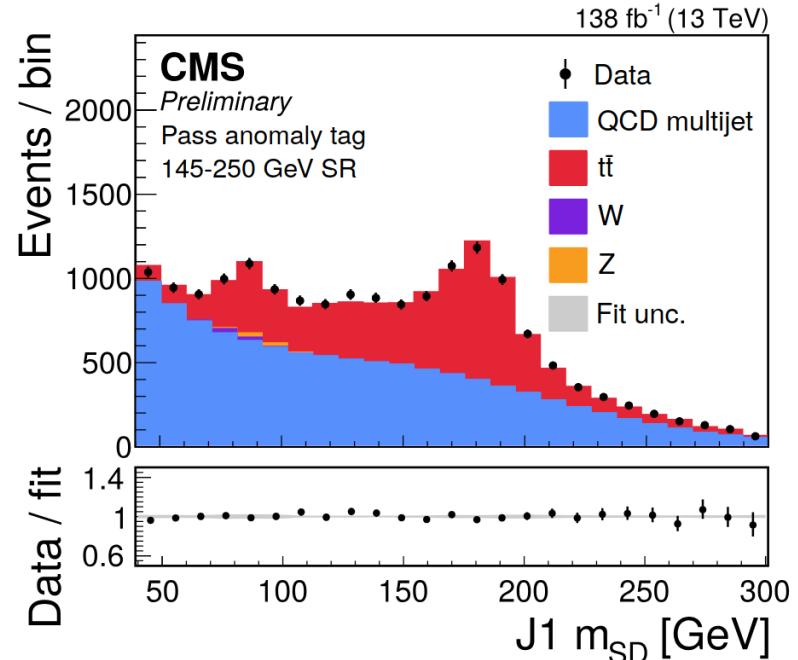
Validation on a real ‘anomaly’

‘Rediscovering’ boosted **top quarks** in data with anomaly detection!



Anomaly
Detection!

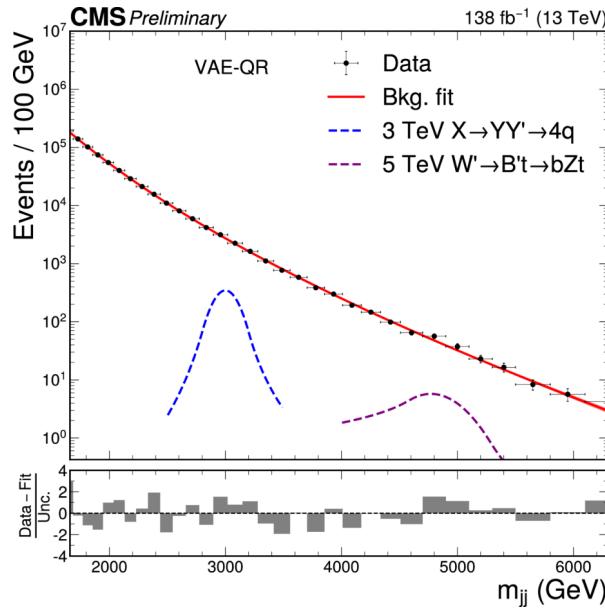
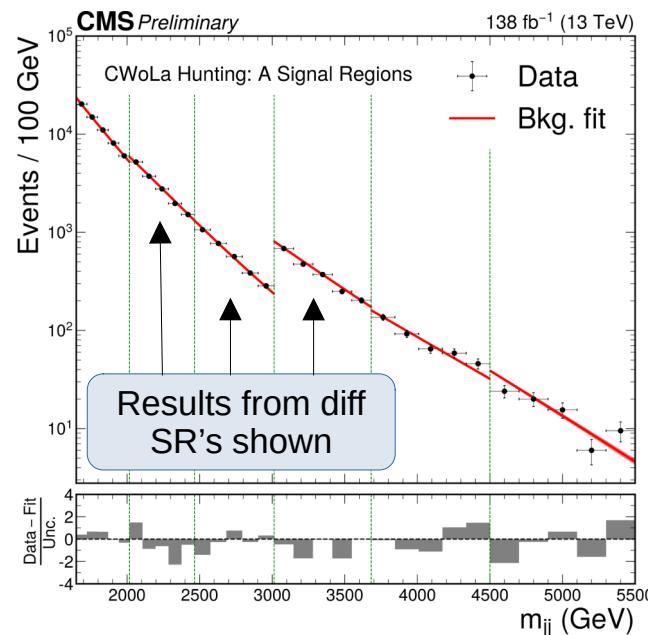
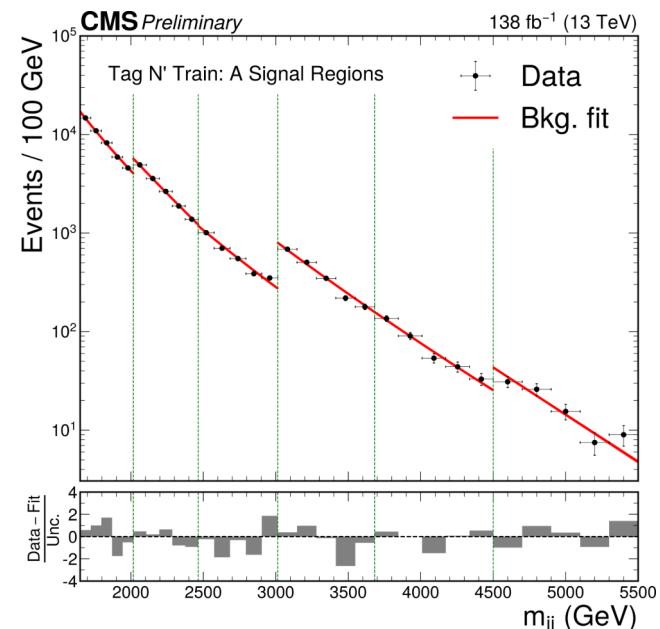
Modified
version* of
TNT method



*Training setup modified to target pair production rather than a heavy resonance, everything else unchanged

Search Results

No significant anomalies from any of the five methods

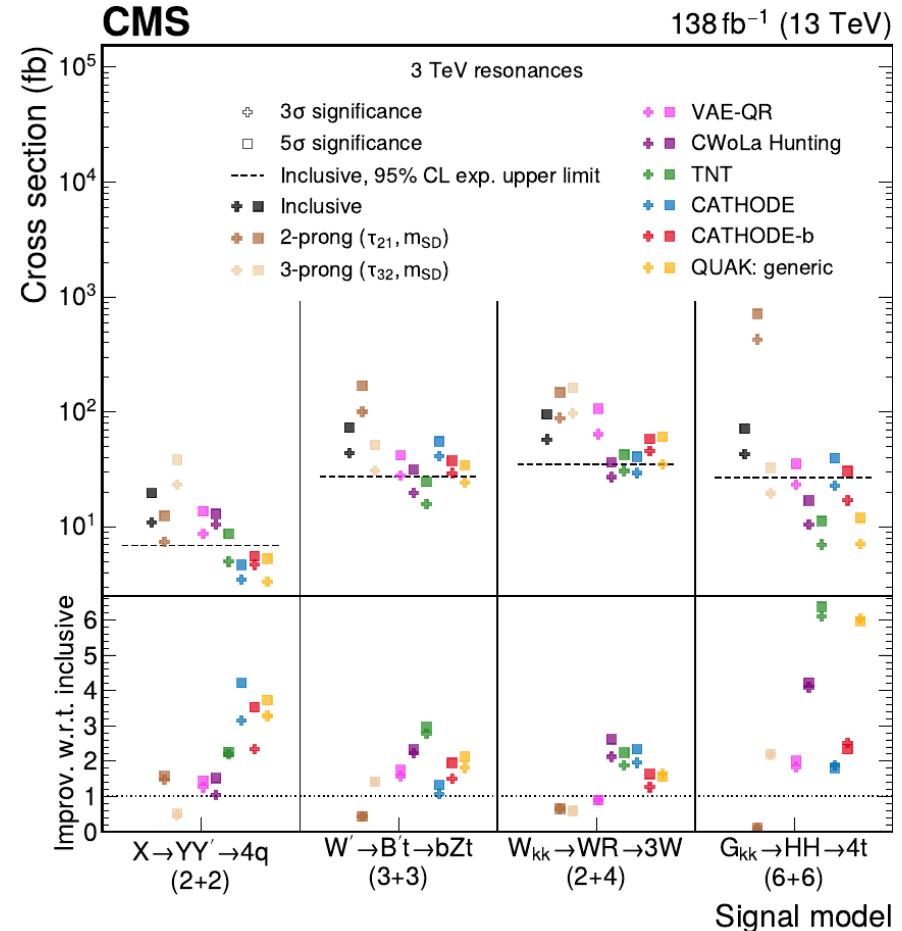


QUAK & CATHODE
results similar

Improved Sensitivity

- “How strong of a signal do I need to get an expected $3\sigma/5\sigma$ excess?”
- **Anomaly detection** improves sensitivity by $\sim 3\text{-}7\times$!

Compared to standard bump hunt



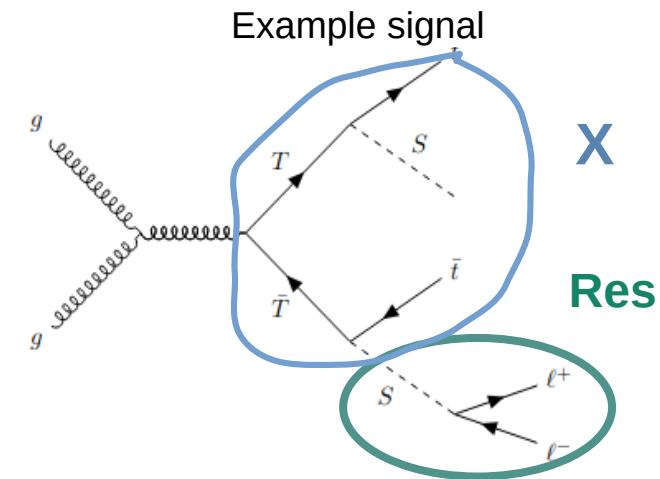
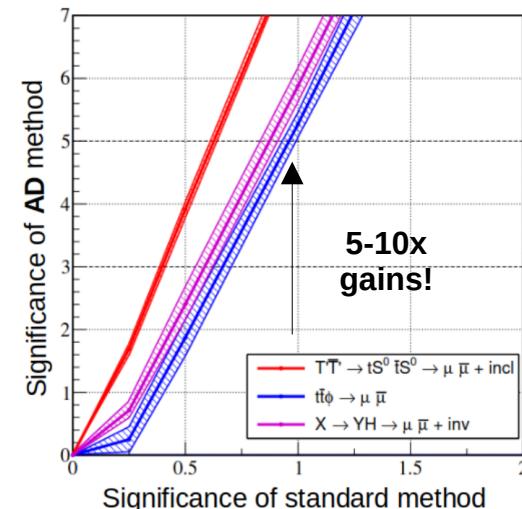
What's next?

New Topologies

arXiv:2504.13249

Brennan, Vami, OA et al

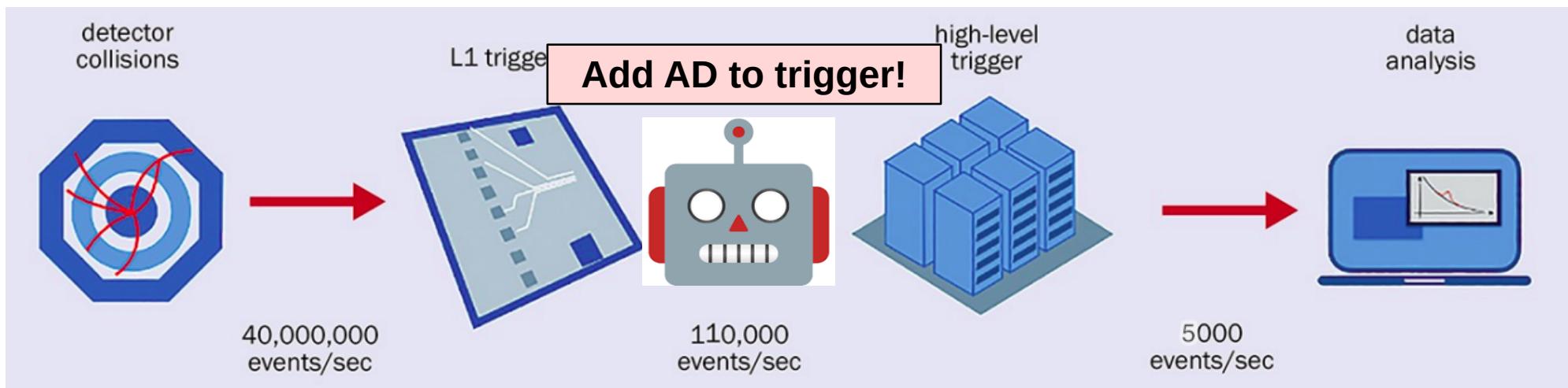
- Expand extend methods to new signatures **beyond jets**
- One program : **Resonance + X**
 - Motivated by ‘non-minimal’ dark/Higgs sector models
- Look for a **resonance** produced in association with other ‘anomalous’ stuff (**X**)
 - Eg di-tau+X or di-muon + X



See also search for $X \rightarrow \text{Higgs} + X$ in backup

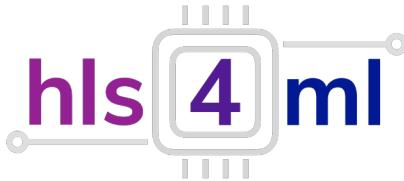
Trigger

- Trigger rejects >99% of events
- What if we aren't saving the new particles ?



Anomaly Detection in Trigger

- Recently CMS & ATLAS have deployed anomaly detection triggers for the first time!
- Significant resource constraints!
 - FPGA, operate at 40 MHz



Deployed
2024!

AXOL1TL CMS-DP-2023-079

CICADA CMS-DP-2023-086

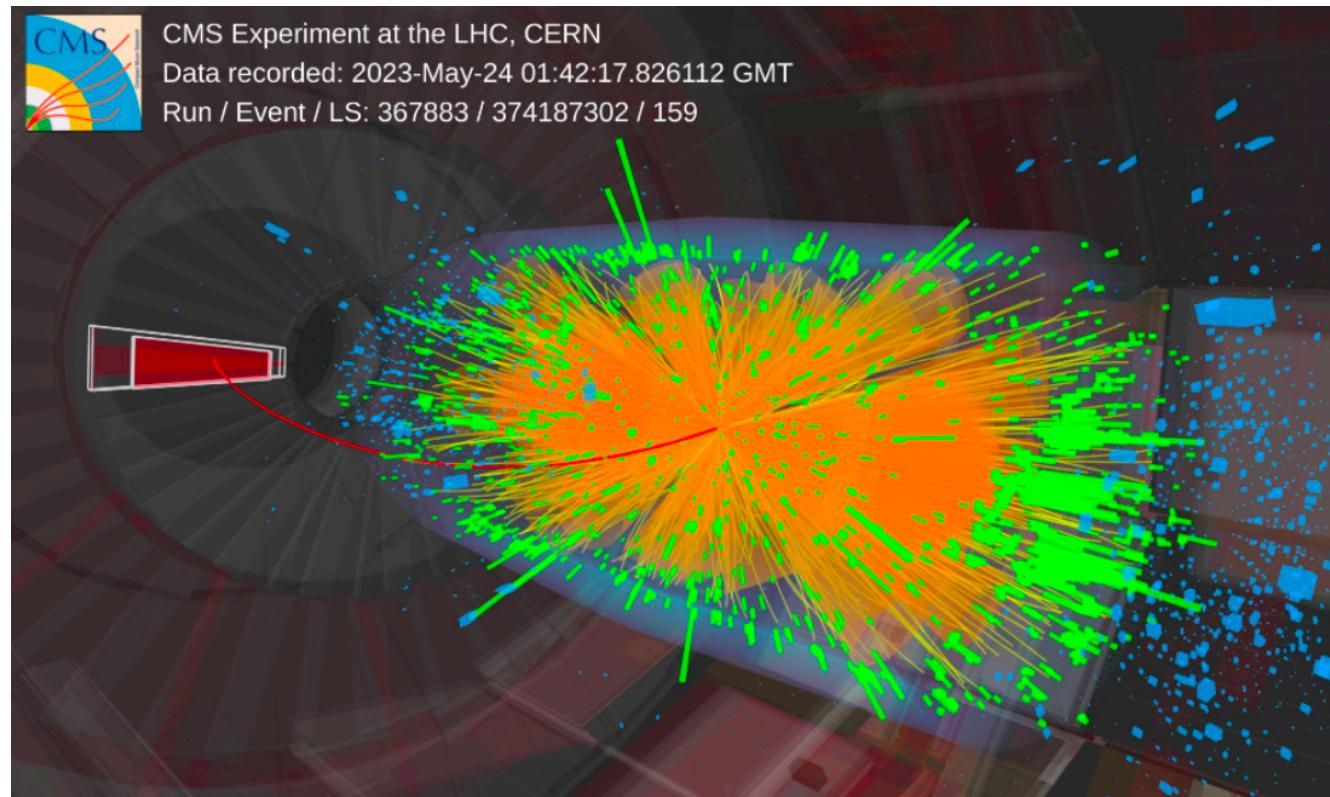
GELATO ATL-DAQ-SLIDE-2025-362

Oz Amram (Fermilab)

An Anomalous Event

A unique **AXOL1TL**
event!

Very busy, 11 jets + 1
muon



Future AD Research Questions

How can we broaden the scope of these AD searches in HEP?

- beyond resonances, using AD triggered data, ...

How can we maximize the physics reach of realtime AD systems?

- AD robust to changing conditions, build invariances, ...

Where else can these AD methods be applied?

- Other experiments, fault detection, data quality monitoring, ...

Ingredient

- High quality scientific data
- Clear indication of outlier
- Understanding of backgrounds
- Short analysis timescale
- A curious young scientist inspecting the data

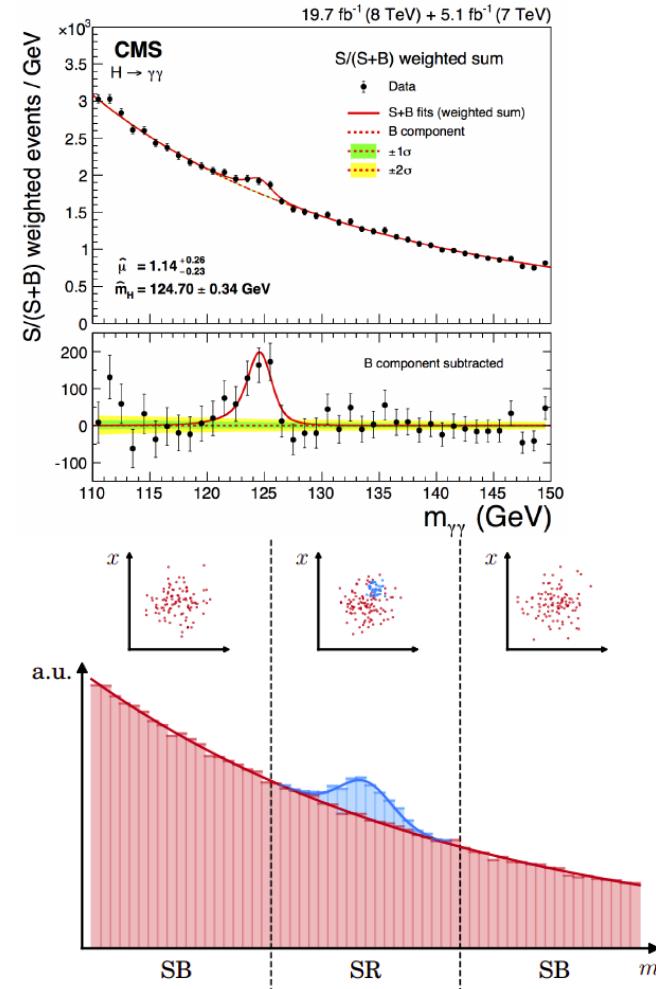
AI Technology

Anomaly Detection

Generative Models

Extending the Bump Hunt

- Classic bump hunt
 - Smoothly falling background, localized resonance
 - 1D fit
- Generative models:
 - Extend this idea to higher dimensions

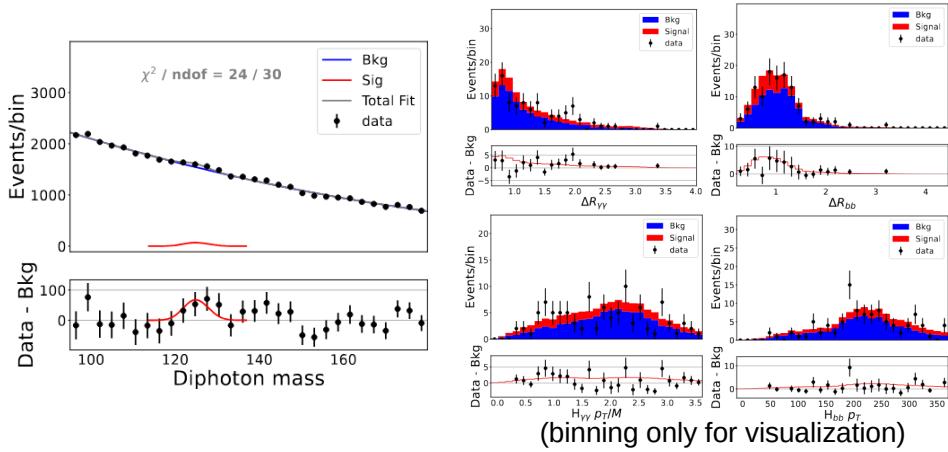
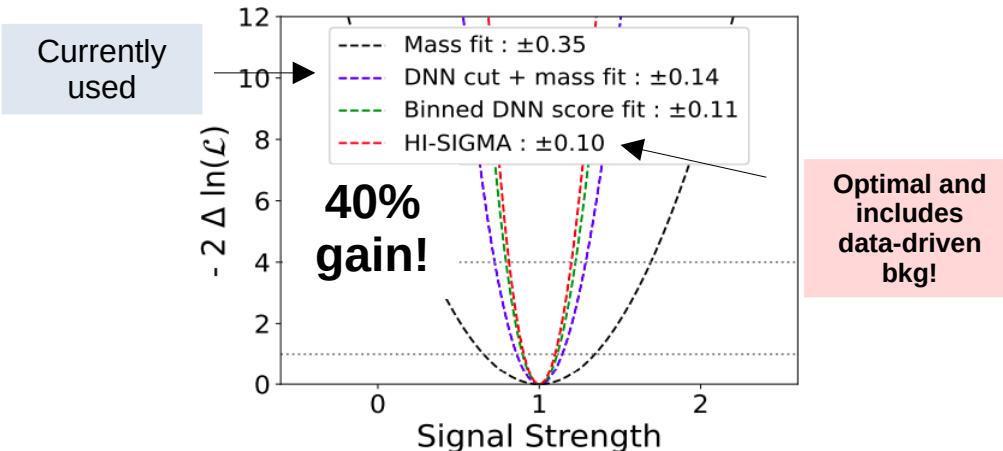


Gen-AI Measurements

2506.06438

OA & Szewc

Example 5D (!) fit of $\text{HH} \rightarrow \text{bb}yy$



- **'HI-SIGMA'**
 - Bump hunt in high dimensions
- Extends 'simulation based inference' ideas to data-driven bkgs!
- More work on uncertainty quantification & robustness needed!

Ingredient

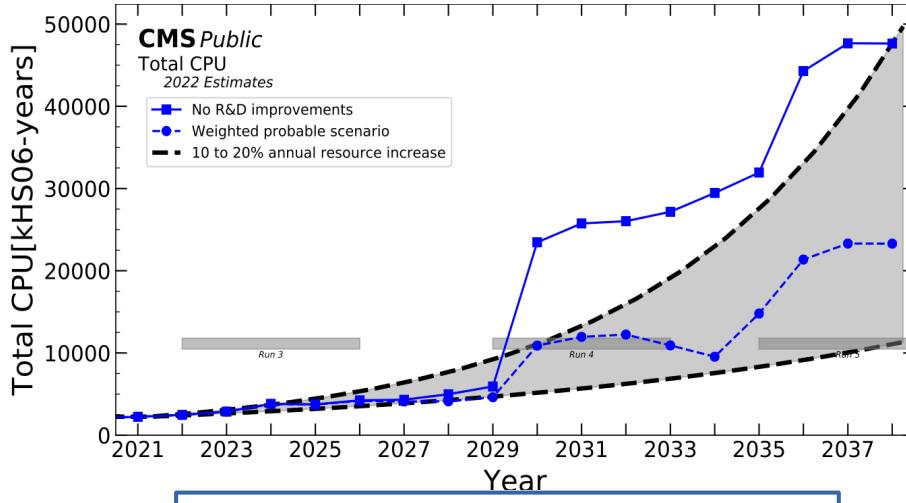
- High quality scientific data
- Clear indication of outlier
- Understanding of backgrounds
- Short analysis timescale
- A curious young scientist inspecting the data

AI Technology

Anomaly Detection

Generative Models

The Need for Fast Simulation



Review Article [2410.21611](https://arxiv.org/abs/2410.21611)
CaloChallenge 2022: A Community Challenge for
Fast Calorimeter Simulation

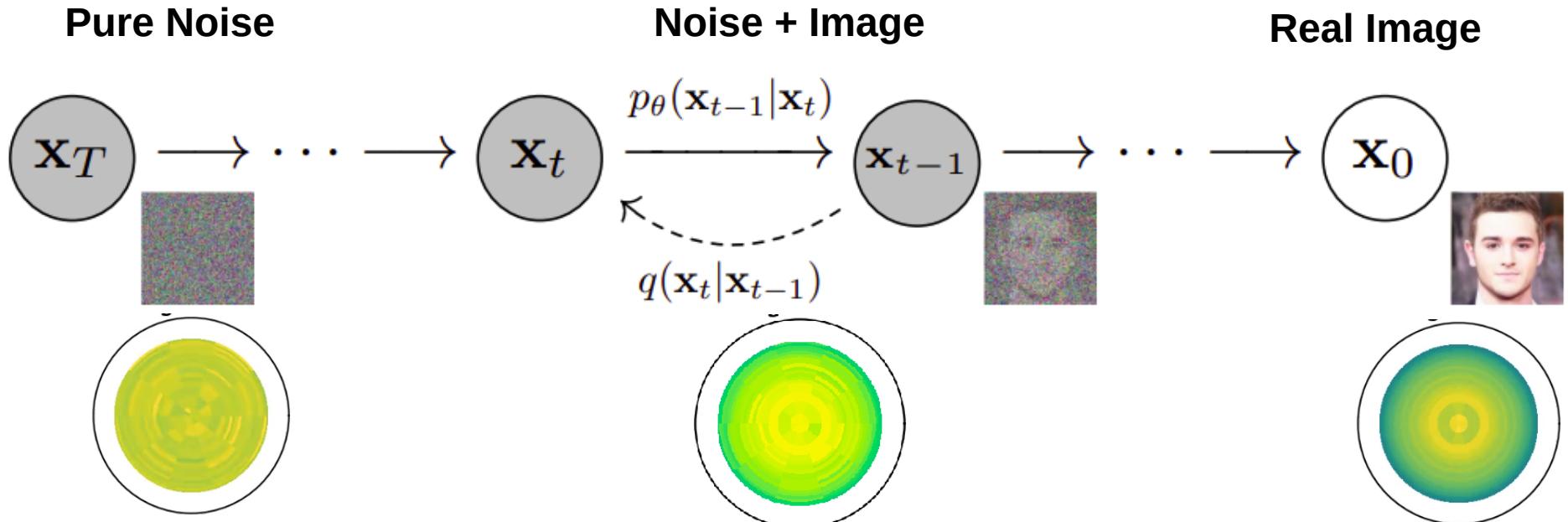
"Calorimeter Simulation", generated via midjourney, 2022

- Simulation crucial in all HEP analyses
- Computing budgets can't keep up with data rate
- **ML-based fast sim. needed for HL-LHC!**

How would our science
change if simulations took
a week/day/hour not ~6 months?

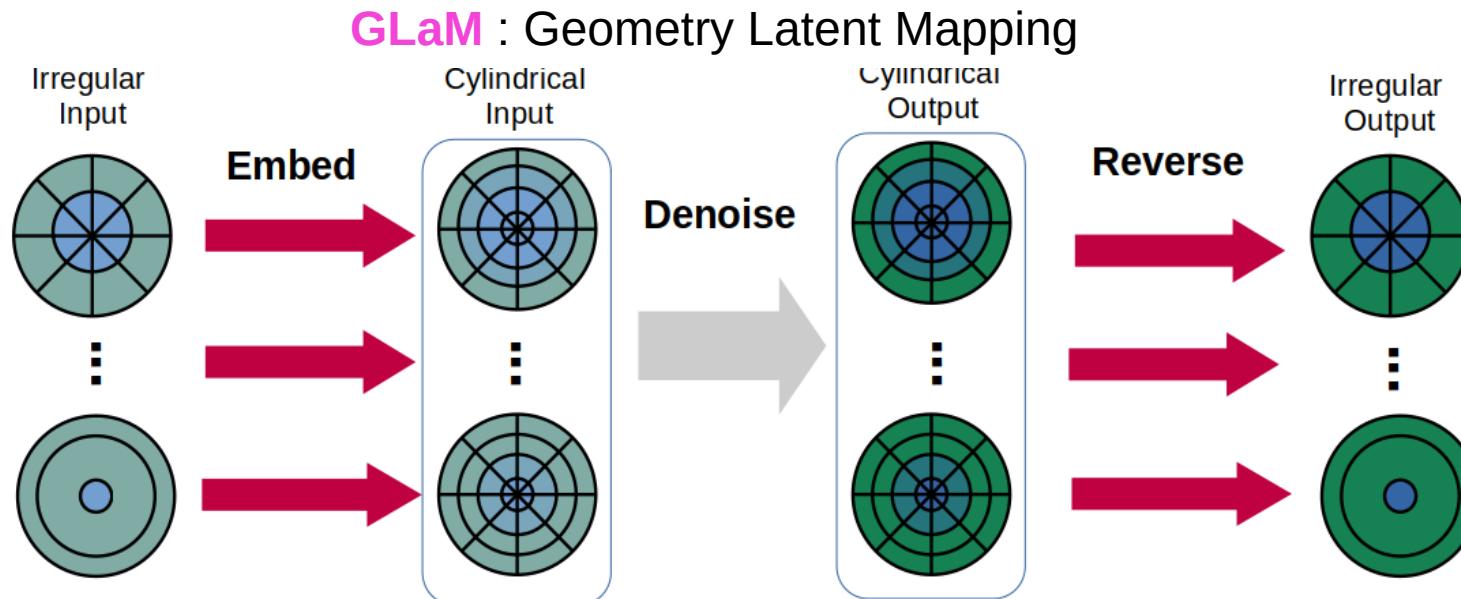
‘CaloDiffusion’

Goal : Train a generative ML model to mimic physics based simulation (Geant) with high accuracy & significant speedup



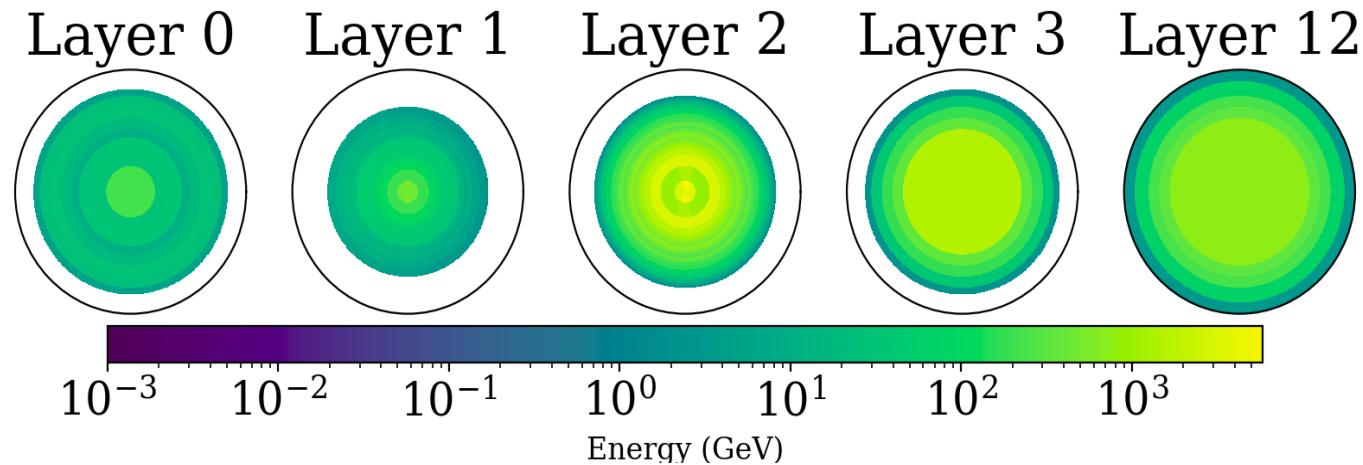
One Innovation : Irregular Geometries

- Real scientific instruments unlike perfect images, have **irregular structure**
 - Can't natively apply your favorite ML tools (like convolutions)
- Learn an **GLaM-orous embedding** that maps input into **regular cylindrical structure**

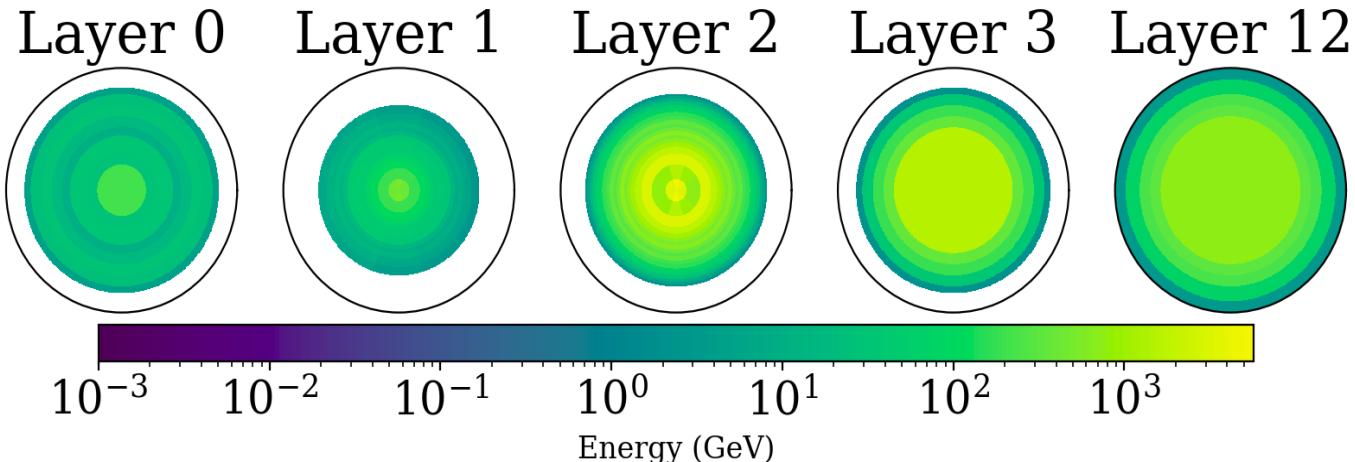


Average Showers

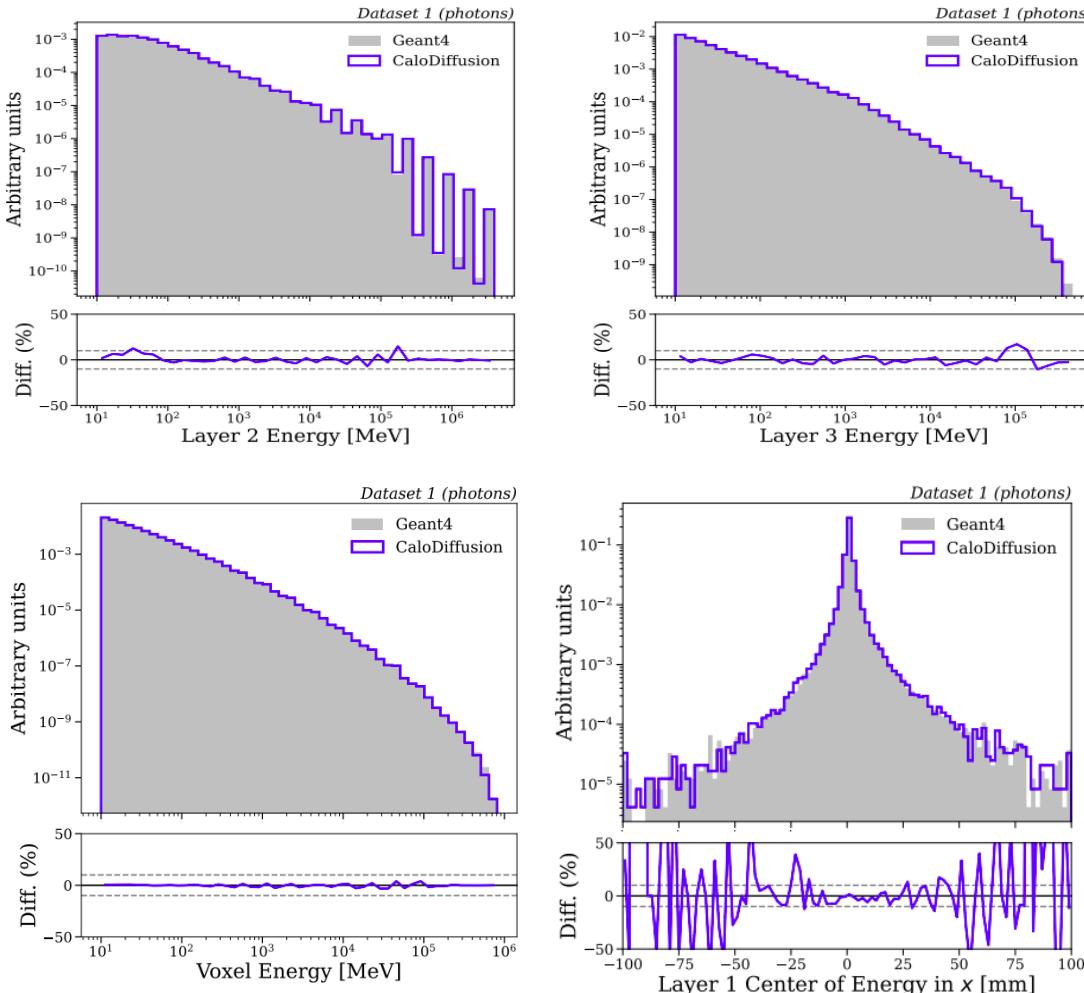
Geant



Calo Diffusion

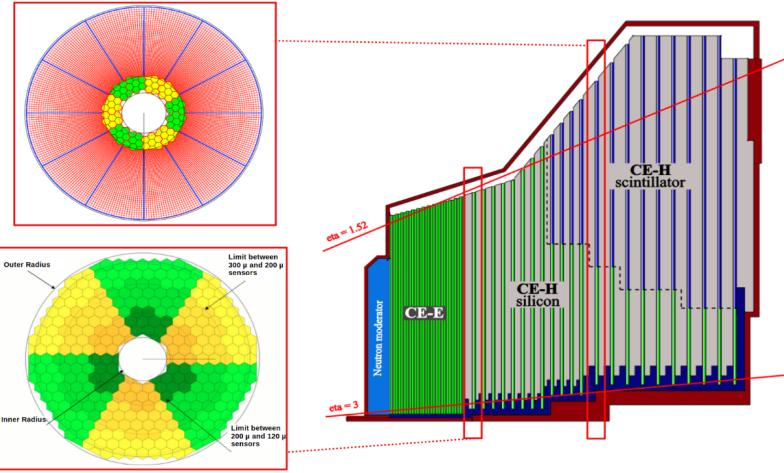


CaloChallenge Results

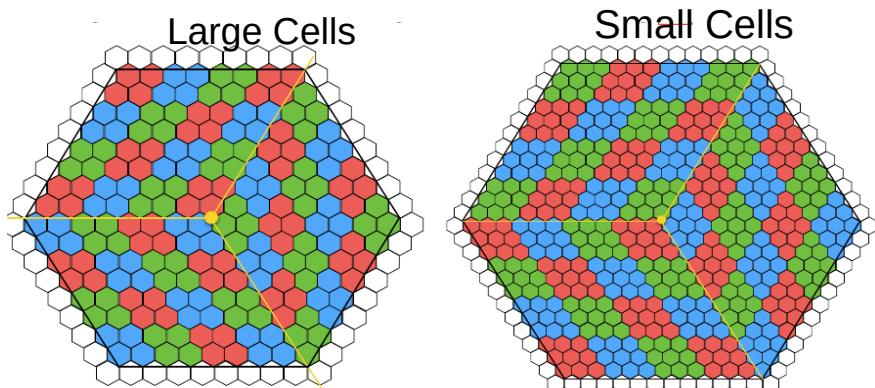


- **Calodiffusion** matches **Geant** to very high fidelity
 - Up to 1000x speed up
- Top-2 in quality across all 4 CaloChallenge datasets (50 total submissions)

CMS High Granularity Calorimeter

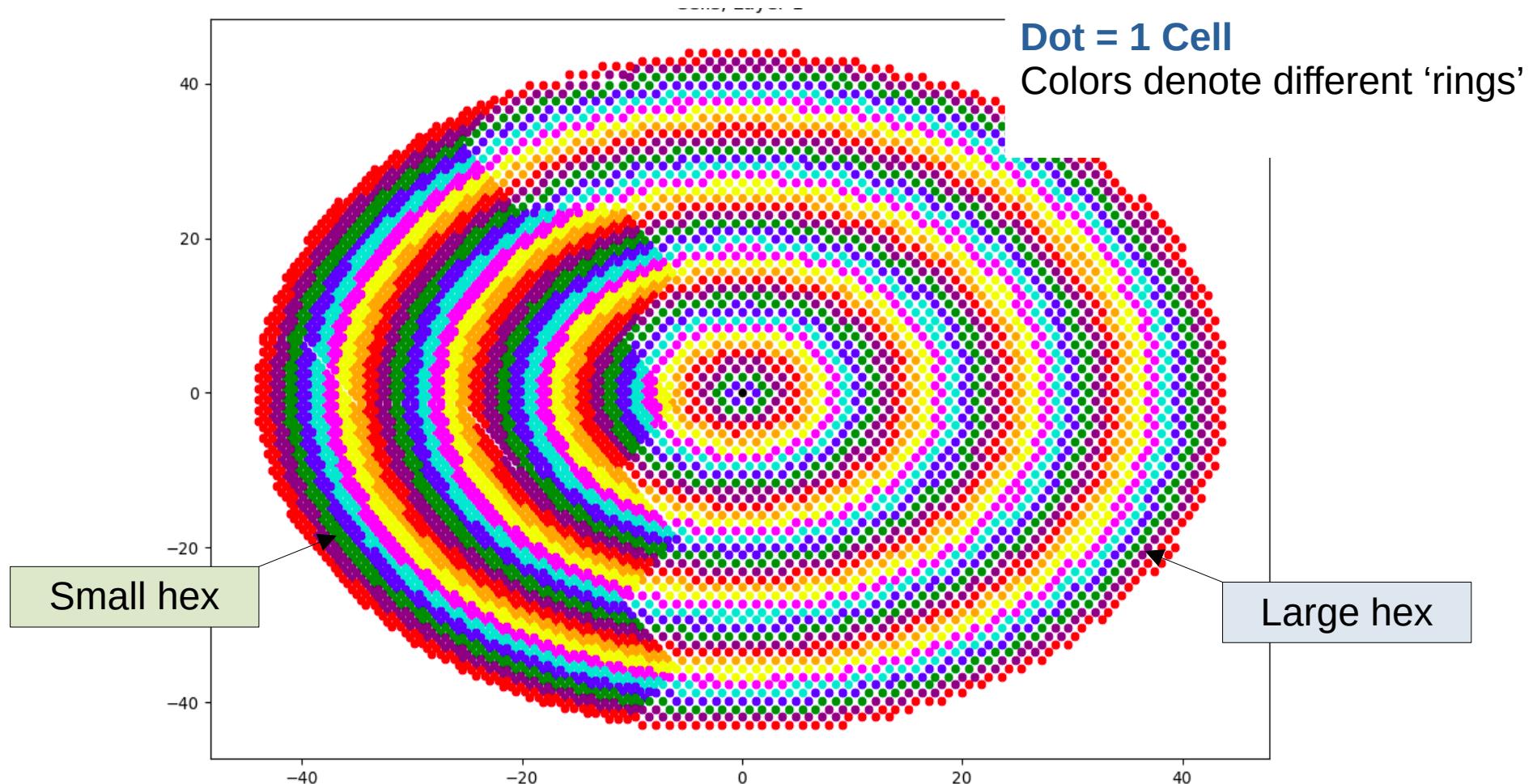


Individual Hexagon
Wafers

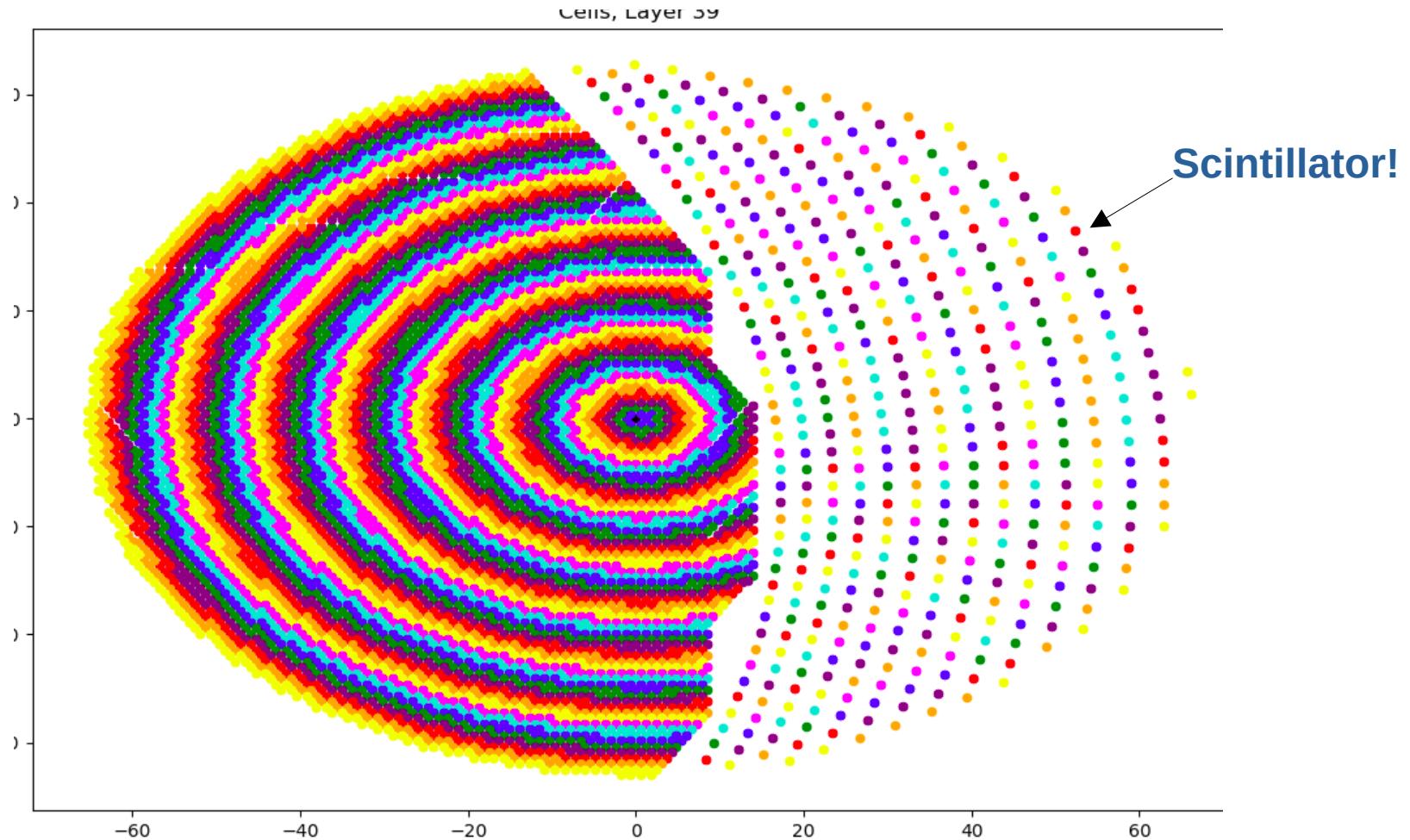


- Complicated hexagonal geometry!
- Very high granularity
 - Up to **1 million** cells in region of shower
- Extremely sparse & irregular
 - Novel methods to do sparsity-based sampling!

Example HGCal Region : Layer 1

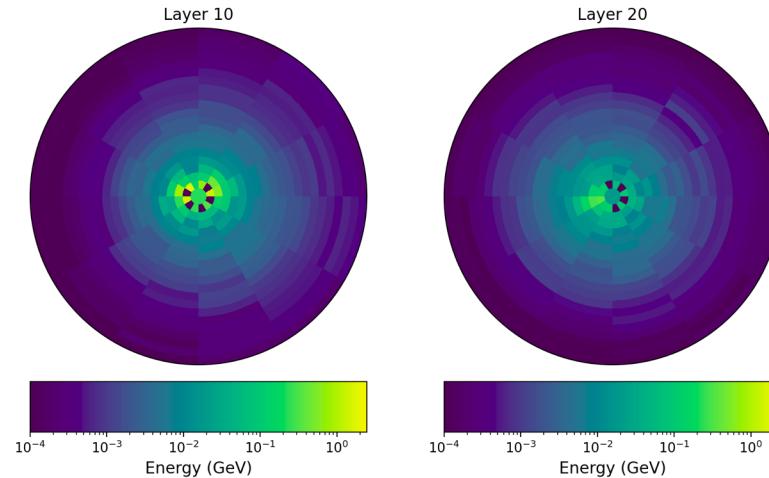
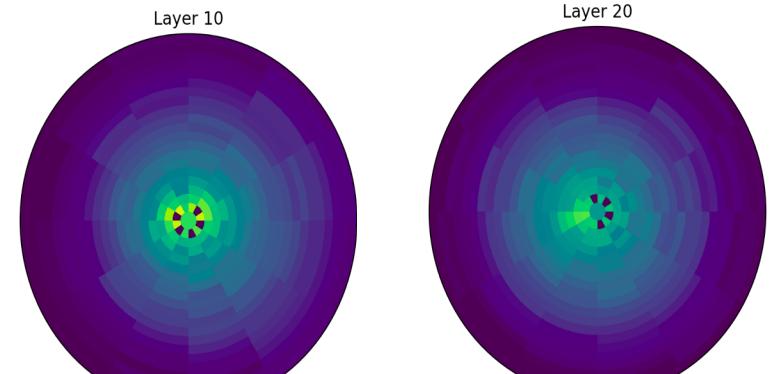


Example HGCal Region : Layer 39

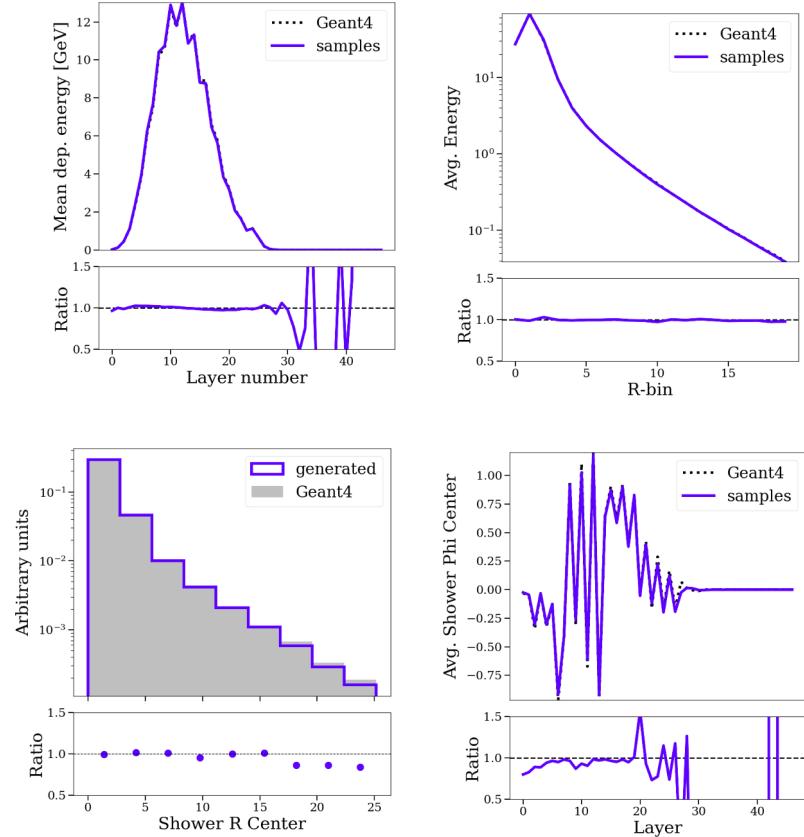


Preliminary Results

Calo Diffusion



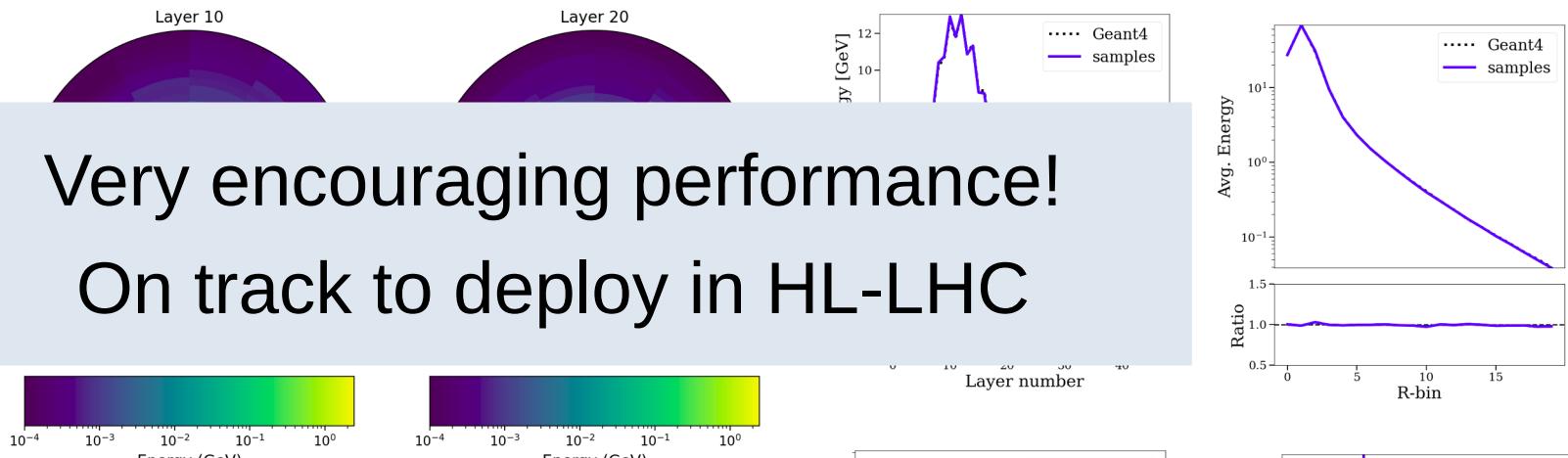
Geant
(CMS Simulation)



Preliminary Results

Calo Diffusion

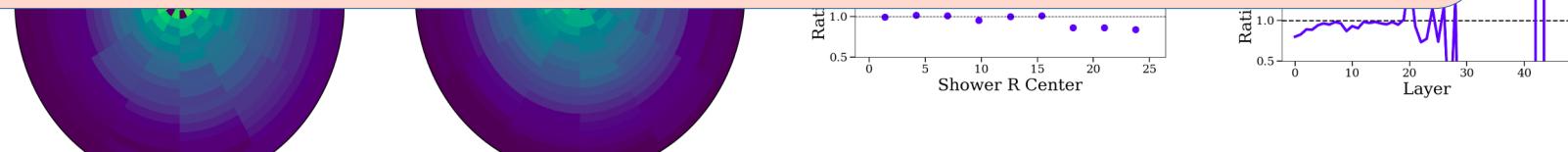
Very encouraging performance!
On track to deploy in HL-LHC



Similar methods applicable to other experiments!

Fixed target experiments, future colliders, surrogate models for optimization, ...

(CMS Simulation)



Ingredient

- High quality scientific data
- Clear indication of outlier
- Understanding of backgrounds
- Short analysis timescale
- A curious young scientist inspecting the data

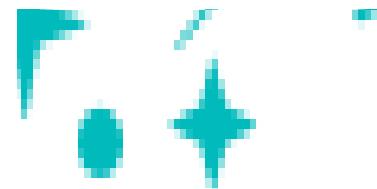
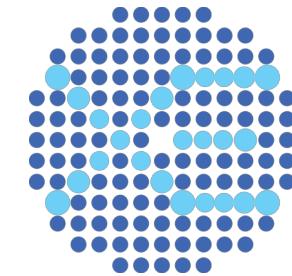
AI Technology

Anomaly Detection

Generative Models

AI Design Optimization

We have excellent experiments now / near future!



...

But what if the particles are just at higher energy?

Beyond the TeV Scale

2023 P5 Report

Exploring
the
Quantum
Universe

2.3 The Path to a 10 TeV pCM

Realization of a future collider will require resources at a global scale and will be built through a worldwide collaborative effort where decisions will be taken collectively from the outset by the partners. This differs from current and past international projects in particle physics, where individual laboratories started projects that were later joined by other laboratories. The proposed program aligns with **the long-term ambition of hosting a major international collider facility in the US, leading the global effort** to understand the fundamental nature of the universe.

... In particular, a muon collider presents an attractive option both for technological innovation and for bringing energy frontier colliders back to the US. The footprint of **a 10 TeV pCM muon collider is almost exactly the size of the Fermilab campus**. A muon collider would rely on a powerful multi-megawatt proton driver delivering very intense and short beam pulses to a target, resulting in the production of pions, which in turn decay into muons. This cloud of muons needs to be captured and cooled before the bulk of the muons have decayed. Once cooled into a beam, fast acceleration is required to further suppress decay losses.

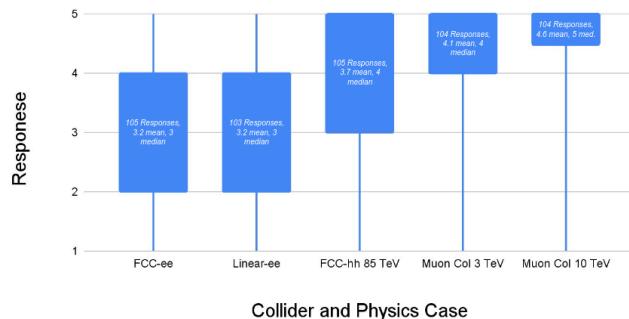
... Although **we do not know if a muon collider is ultimately feasible**, the road toward it leads from current Fermilab strengths and capabilities to **a series of proton beam improvements and neutrino beam facilities**, each producing world-class science while performing critical R&D towards a muon collider. At the end of the path is an unparalleled global facility on US soil. **This is our Muon Shot.**

Slide from Hitoshi Murayama

39

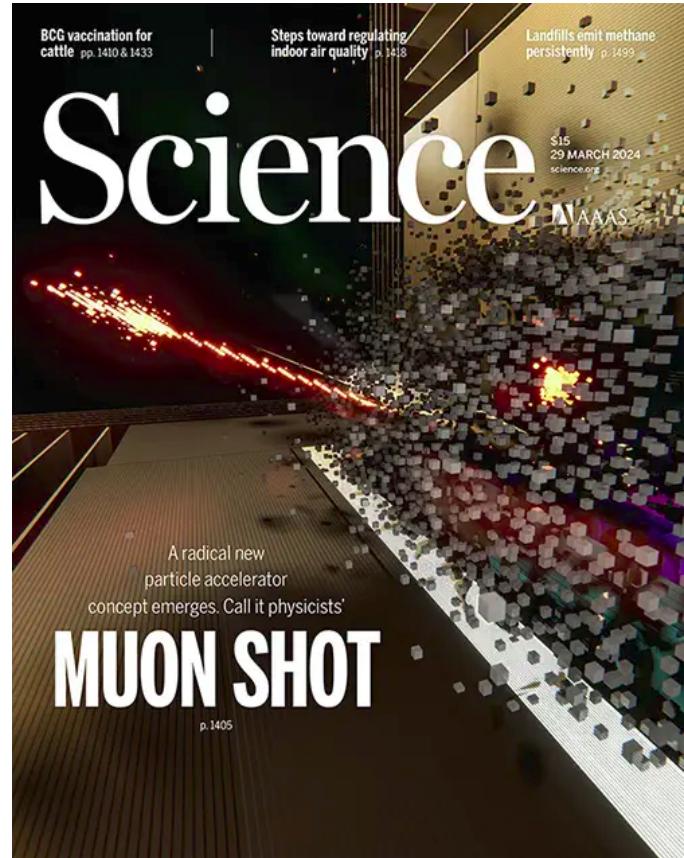
Excitement for Physics Case of Future Colliders

(Rated Response: 1 not excited - 5 very excited), box edges 25% quantile and 75% quantile (discrete)



"Most exciting" future collider option in survey of US Early Career HEP researchers

OA & Cummings
2503.22834



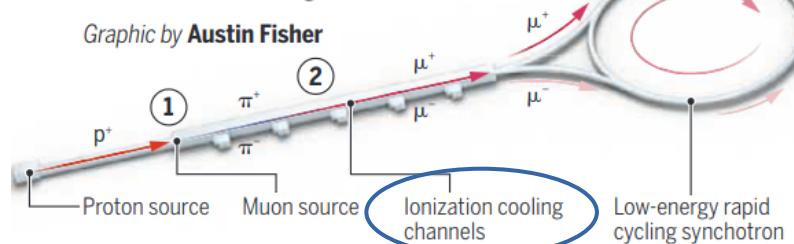
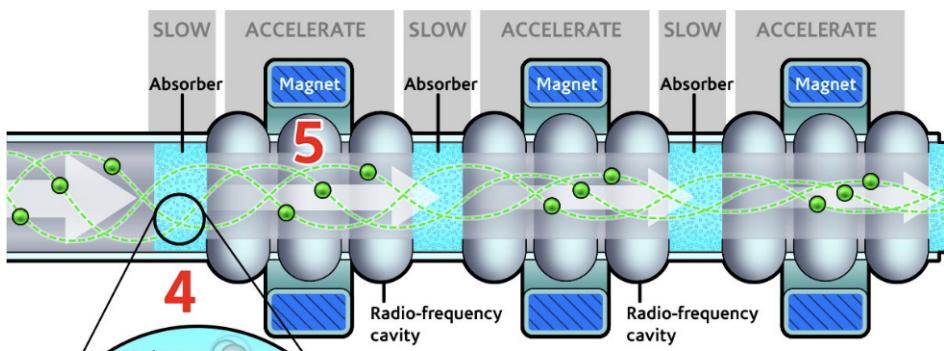
Technical Challenges

Science Magazine

A smashing idea

A muon collider would smash high-energy muons—heavier, unstable cousins of electrons—into their antiparticles in two huge particle detectors. In its ability to blast out massive new particles, it should rival a more conventional proton collider running at an energy 10 times as high. It would also be smaller and potentially much cheaper—if it can be built. To make a muon collider, physicists will have to generate muons, wrangle them into compact beams, and smash them together in the few milliseconds before the particles decay. They'll also have to cope with radiation emanating from the muon beams.

Graphic by Austin Fisher



- Cooling step : absorb + accelerate
 - Each achieves few % cooling
 - Need $O(100)$ steps

Complex designs with many parameters

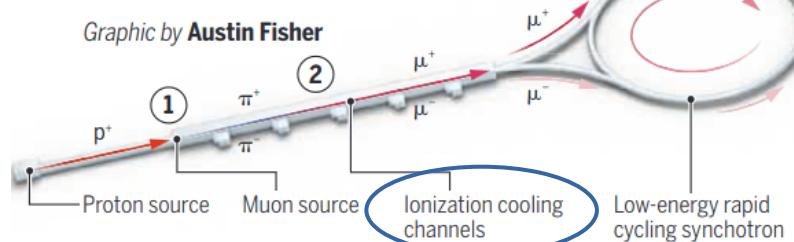
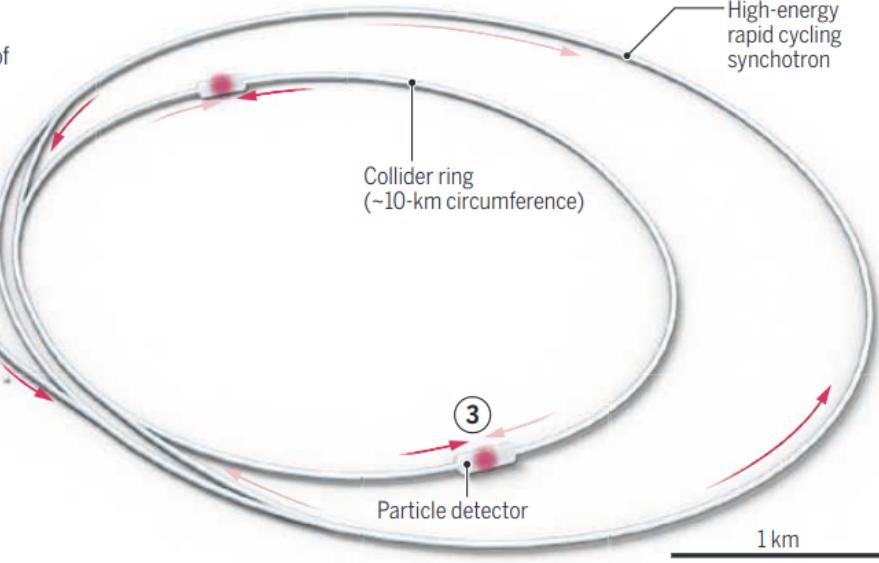
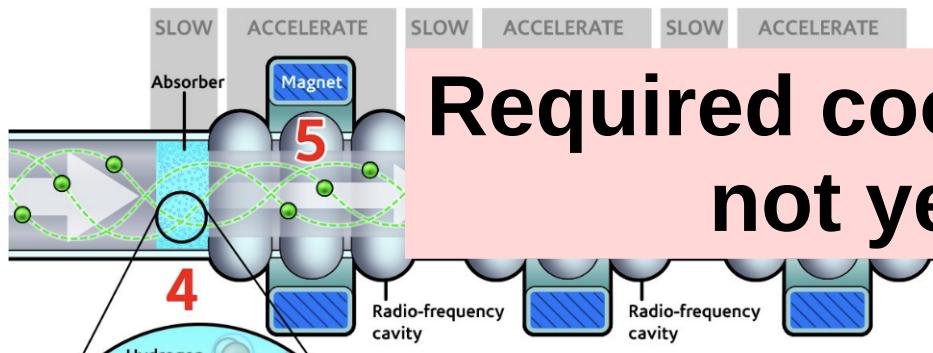
Technical Challenges

Science Magazine

A smashing idea

A muon collider would smash high-energy muons—heavier, unstable cousins of electrons—into their antiparticles in two huge particle detectors. In its ability to blast out massive new particles, it should rival a more conventional proton collider running at an energy 10 times as high. It would also be smaller and potentially much cheaper—if it can be built. To make a muon collider, physicists will have to generate muons, wrangle them into compact beams, and smash them together in the few milliseconds before the particles decay. They'll also have to cope with radiation emanating from the muon beams.

Graphic by Austin Fisher



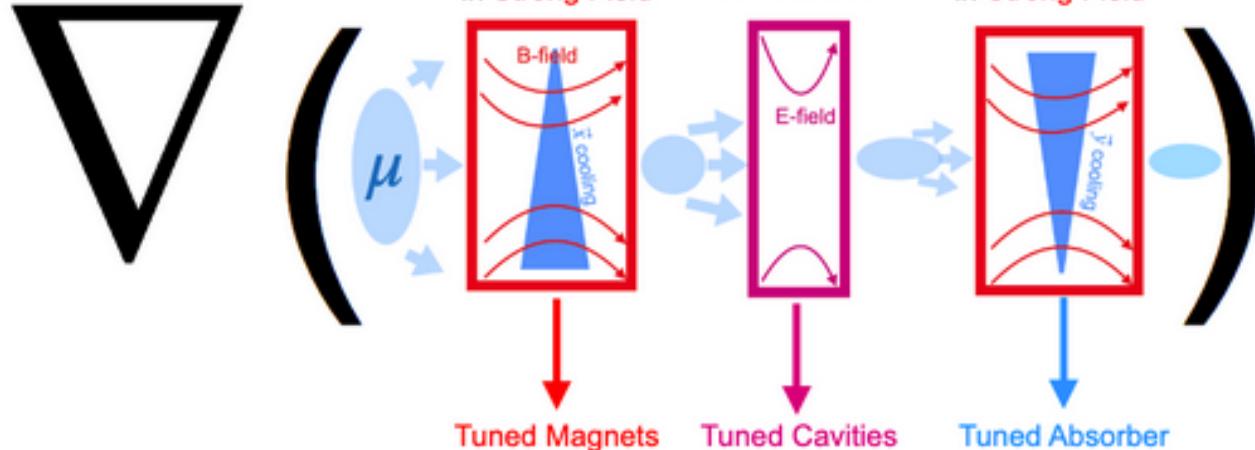
Required cooling performance
not yet achieved!

- Cooling step : absorb + accelerate

cooling

Complex designs with many
parameters

AI-Optimized Cooling Designs



~100s param cooling designs difficult to hand optimize

→ use Diff. Prog. Methods!

$$\frac{\partial \epsilon}{\partial B} = \frac{\partial \epsilon}{\partial A_2} \frac{\partial A_2}{\partial B} + \frac{\partial \epsilon}{\partial A_2} \frac{\partial A_2}{\partial RF} \frac{\partial RF}{\partial A_1} \frac{\partial A_1}{\partial B} + \dots$$

Will benefit from collaboration with SLAC Accelerator & Diff. Prog. Experts!

Potential for field-shaping AI contribution!

Ingredient

- High quality scientific data
- Clear indication of outlier
- Understanding of backgrounds
- Short analysis timescale
- A curious young scientist inspecting the data

AI Technology

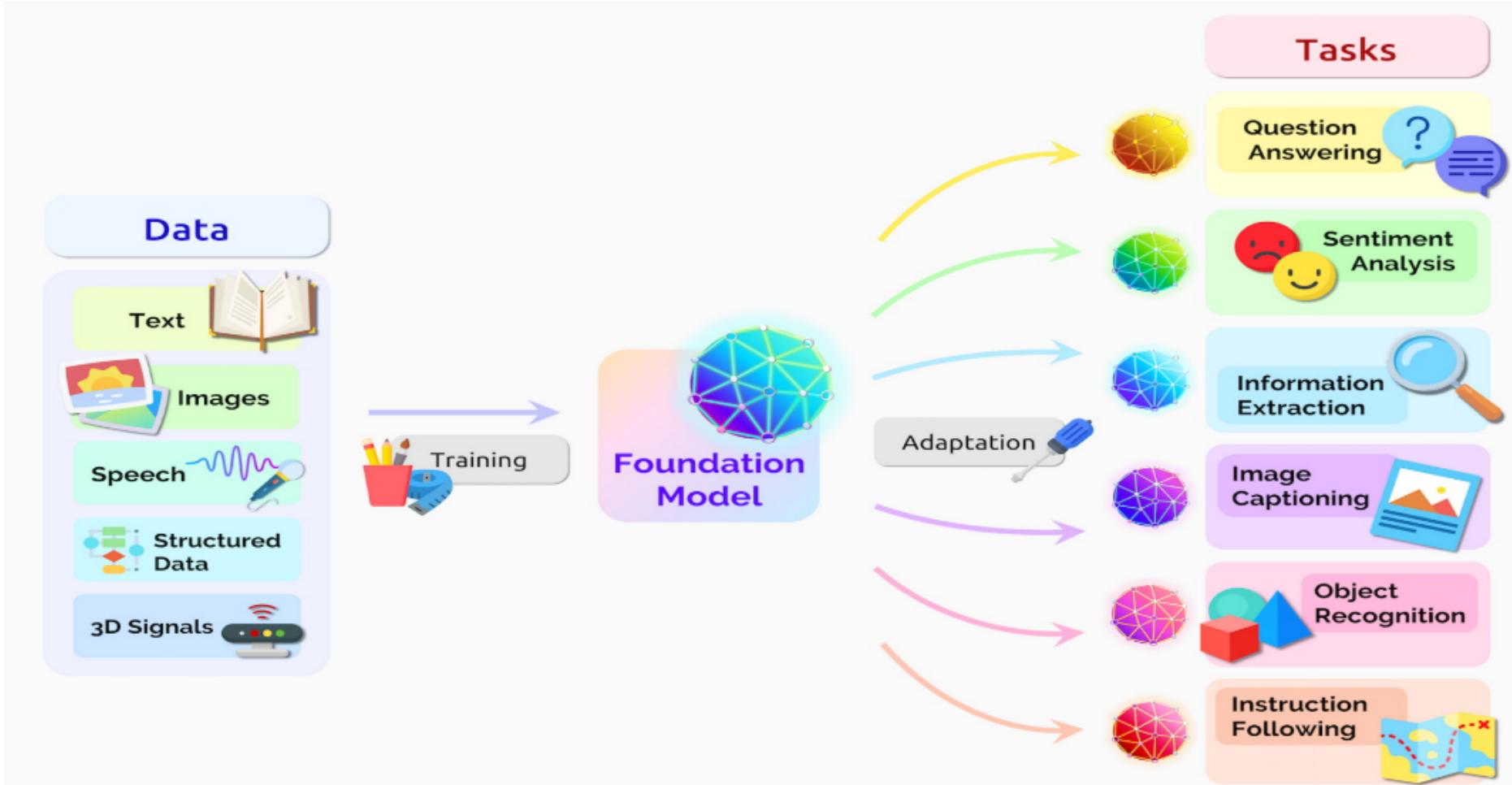
Anomaly Detection

Generative Models

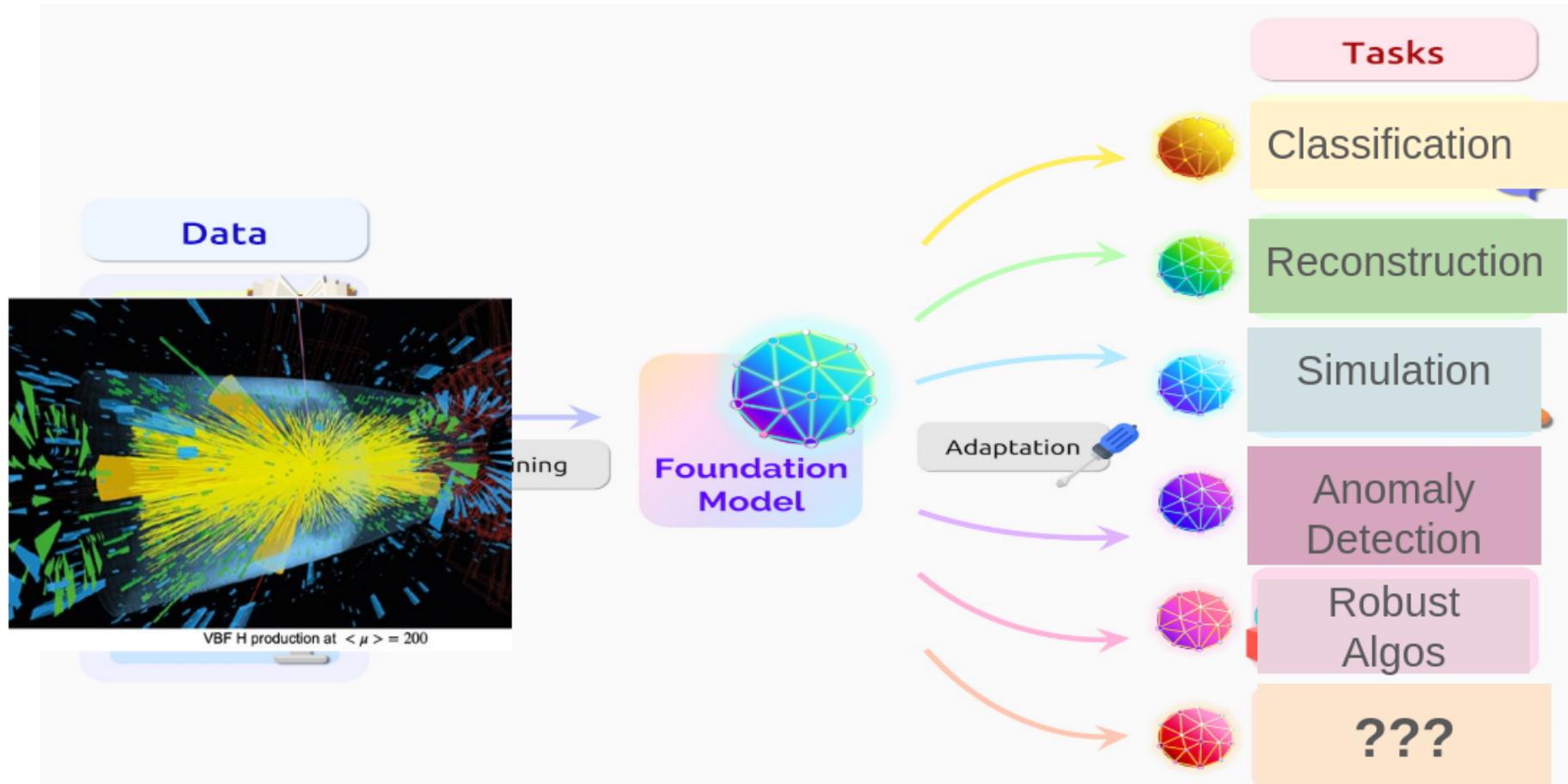
AI Design Optimization

Foundation Models

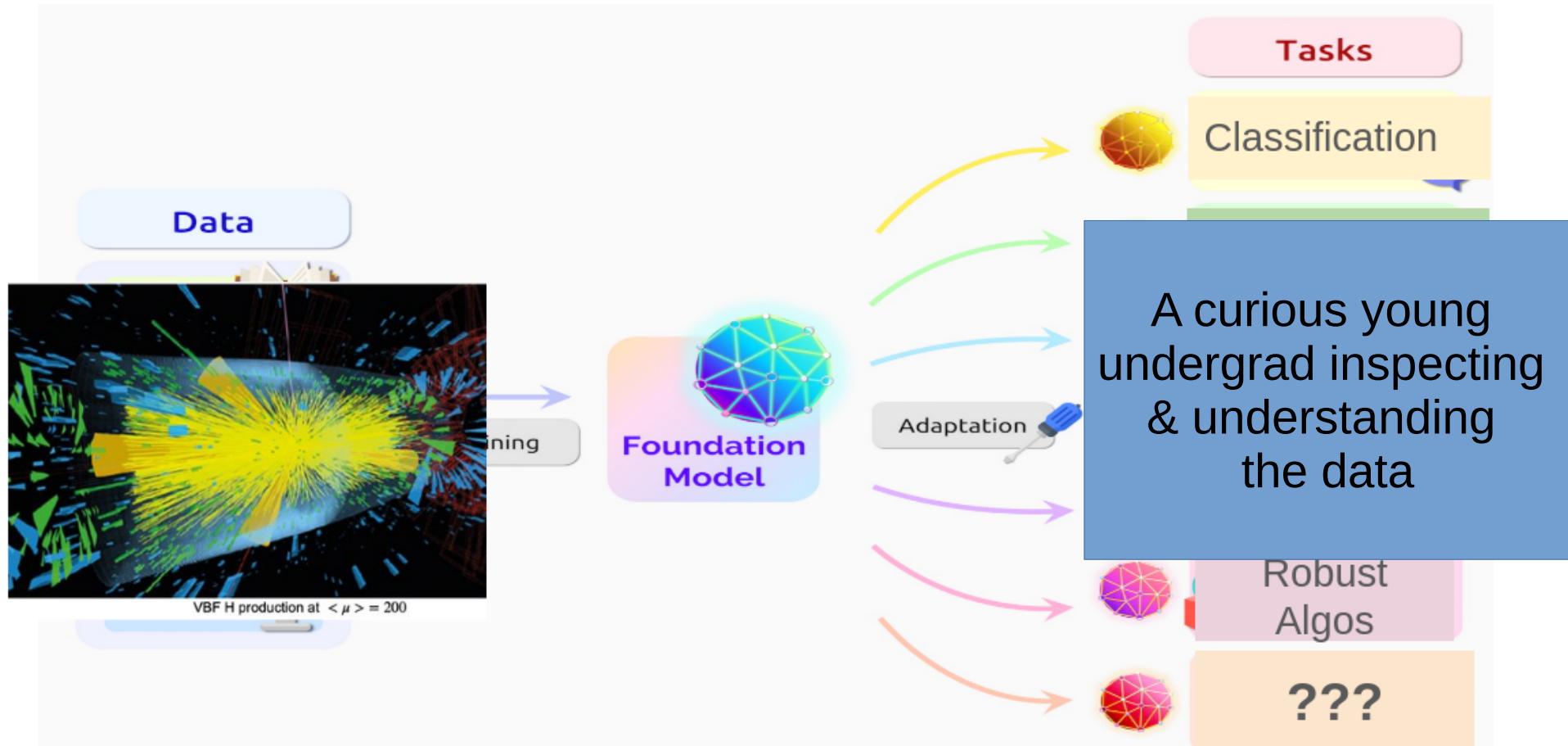
Foundation Models



Foundation Models



Foundation Models



How do we get there?

LLM Agents

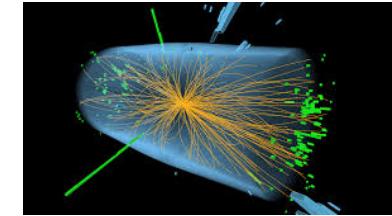
ChatGPT

Gemini

Understands '**the world**'(?)

Given tasks, iterate,
interpret

Physics Understanding



Models that understand
our data

Can 'manually inspect' at
scale

How do we get there?

LLM Agents

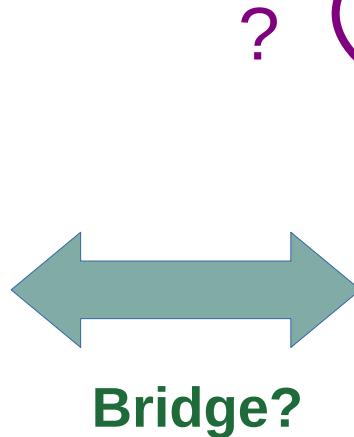
ChatGPT

Gemini

Claude

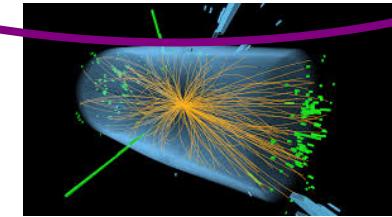
Understands '**the world**'(?)

Given tasks, iterate,
interpret



Bridge?

Physics Understanding



Models that understand
our data

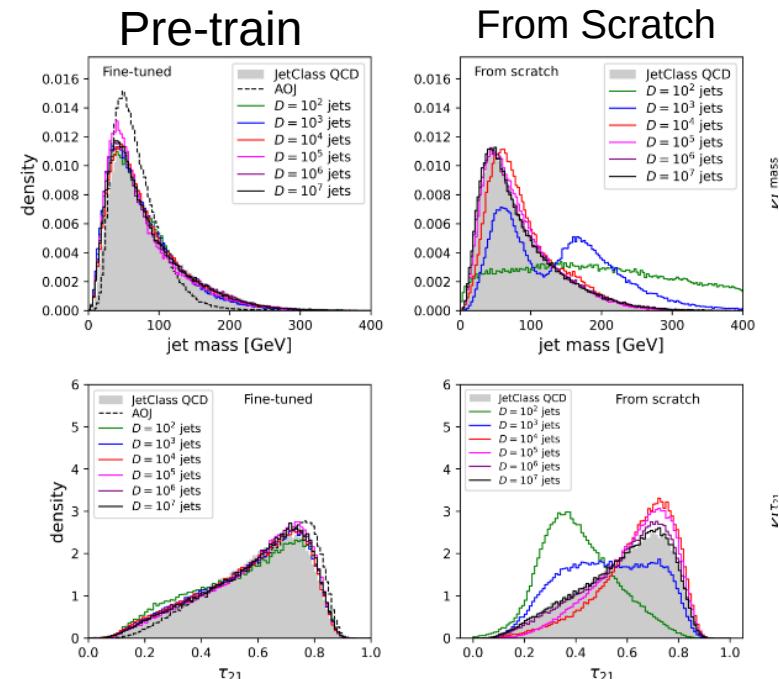
Can 'manually inspect' at
scale

How to develop understanding?

- One approach:
Generation
- “What I cannot create I
do not understand” –
Feynman
- Many other possibilities!

Masking particles ([2401.13537](#)), large supervised
([2405.12972](#)), mix gen. & sup. ([2510.24066](#)), ...

Pre-train on 180M jets from CMS open
data →
fine tune on 100-1M Delphes Sim. jets



How to build the bridge?

PAPERCLIP (2403.08851)

CLIP fine-tuning

With Hubble *observation-proposal abstract pairs*

Hubble proposal abstracts

Category: Galaxies. We propose WFC3/UVIS F336W, F438W, and F814W observations for 8 Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS) scheduled for JWST cycle 1 (GO1) observations. With a proposal period of 9 days for 50% of the GO1 LIRGs, observations taken now will provide the concurrent WFC3/UVIS imaging necessary to reliably age-date the star ...

Mixtral + Outlines

Optional summarization with constrained LLM generation

Luminous Infrared Galaxies, star clusters, nuclear regions, extranuclear regions, hydrogen recombination lines; measure fraction of star formation in clusters, determine nuclear and extranuclear cluster destruction rates, ...

Text encoder

Hubble observations

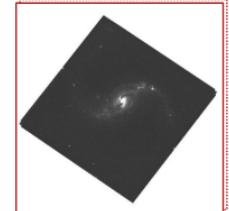
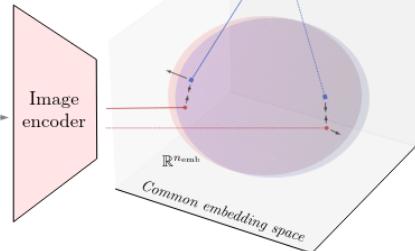


Image encoder

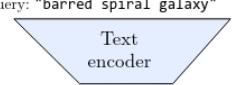


Downstream task: observation retrieval

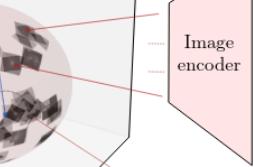
Given natural language text query

Query: "barred spiral galaxy"

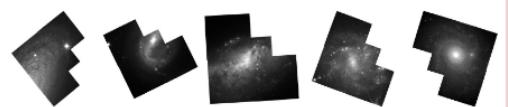
Text encoder



Candidate observations



Closest observations



How would we do something similar for HEP/? data?

What capabilities could it unlock?

Built a text \leftrightarrow data (image) mapping with a contrastive pre-training

Ingredient

- High quality scientific data
- Clear indication of outlier
- Understanding of backgrounds
- Short analysis timescale
- A curious young scientist inspecting the data

AI Technology

Anomaly Detection

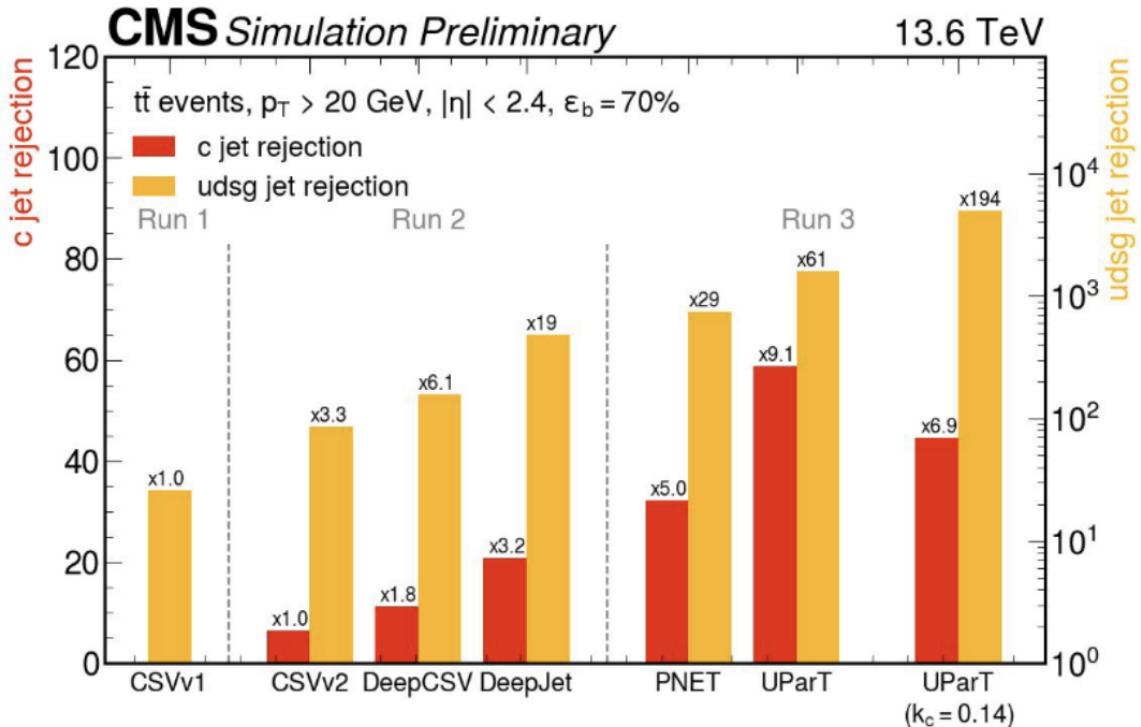
Generative Models

AI Design Optimization

Foundation Models

Previous Era: AI as Tool

‘Simple’ questions, complex answers



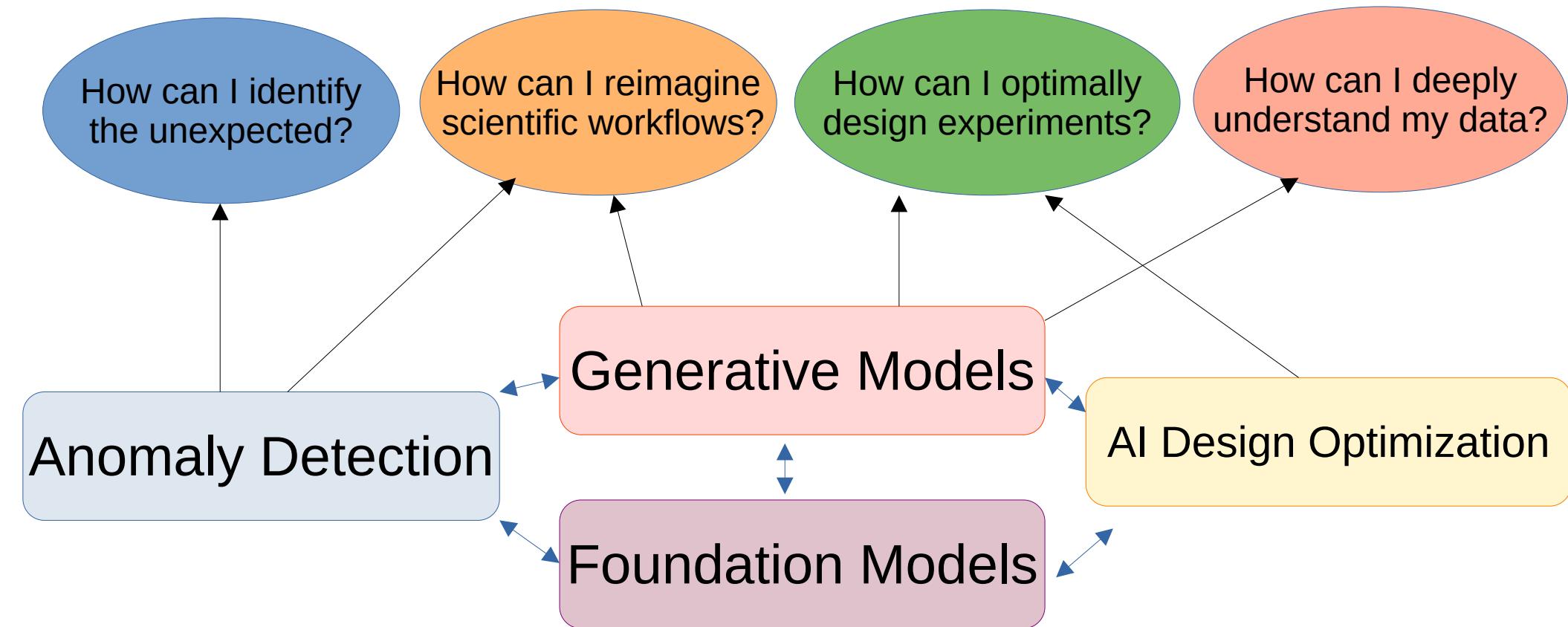
Asking same question
for the last ten years
“Is this a bottom quark
jet?”

Now 200x better!

Fully connected → CNN → Graph → Transformer

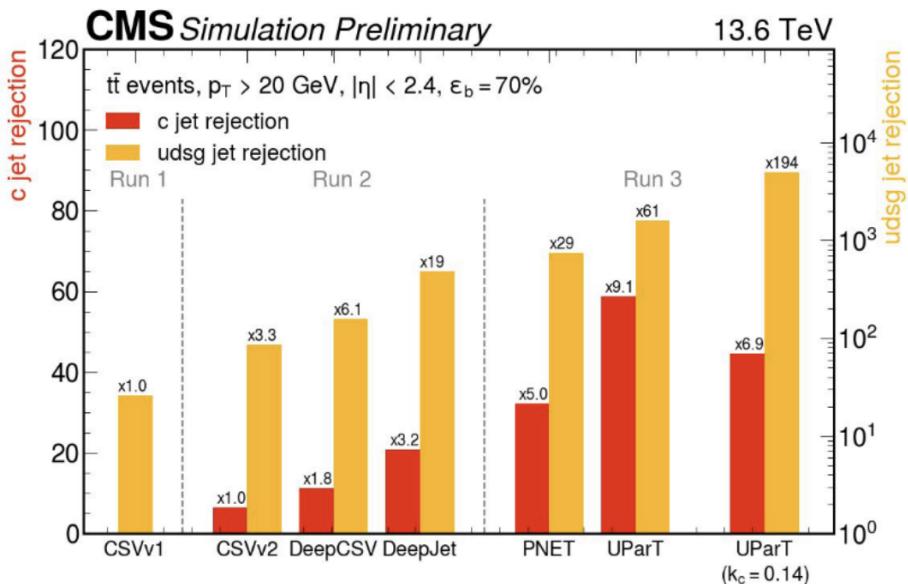
AI as a Paradigm Shift

Ask **new questions**, only possible with AI



AI as a tool

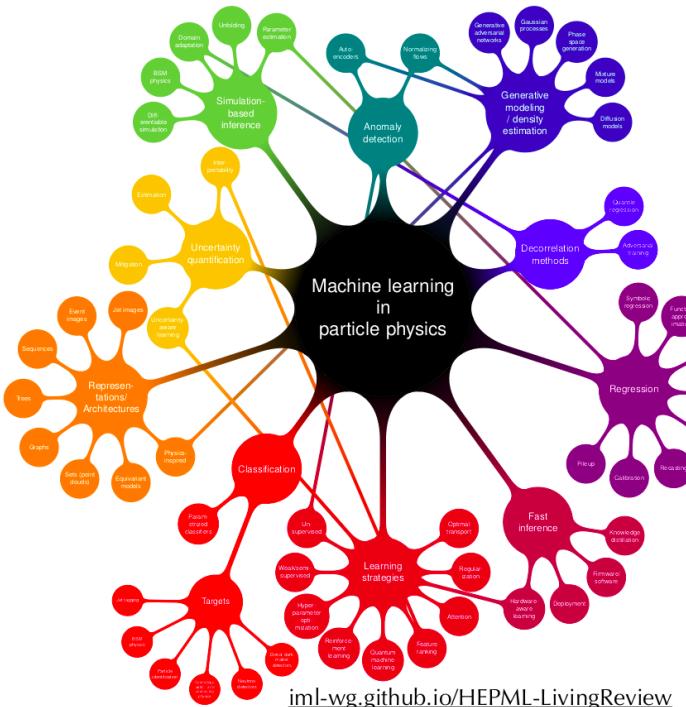
'Simple' questions, complex answers



Fully connected → CNN → Graph → Transformer

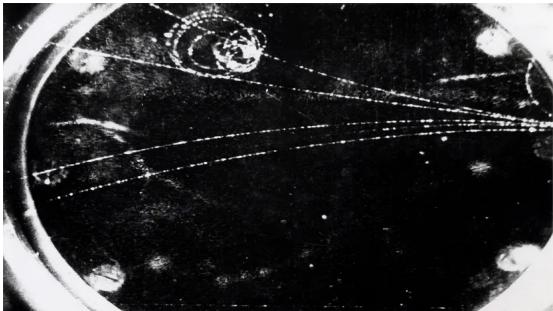
AI as a paradigm shift

Ask **new questions**, only possible with AI

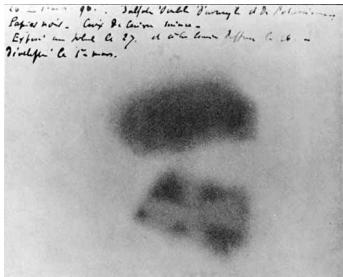


Whatever comes next in fundamental physics will be surprising

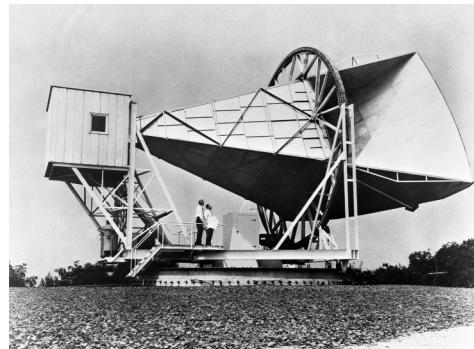
1936



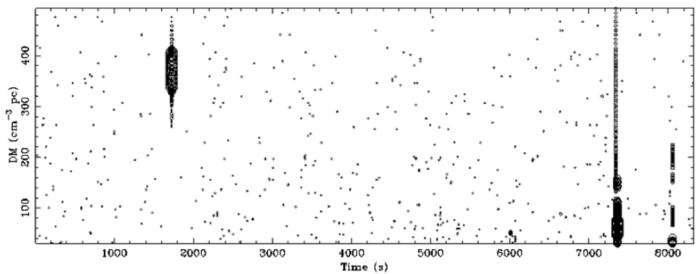
1896



1964



2006



2026?

Lets be ready for it!

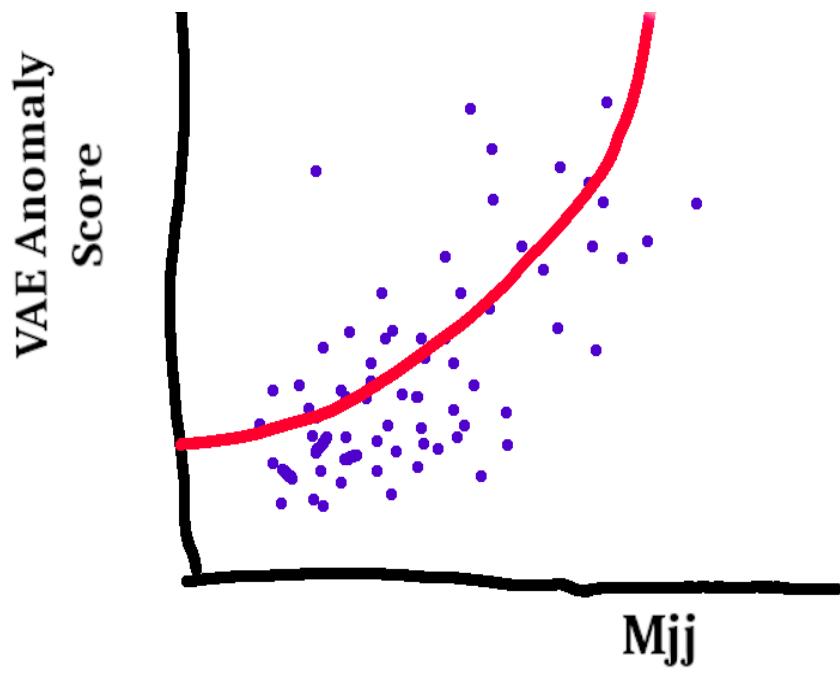
Conclusions

Whatever comes next in particle physics will be surprising

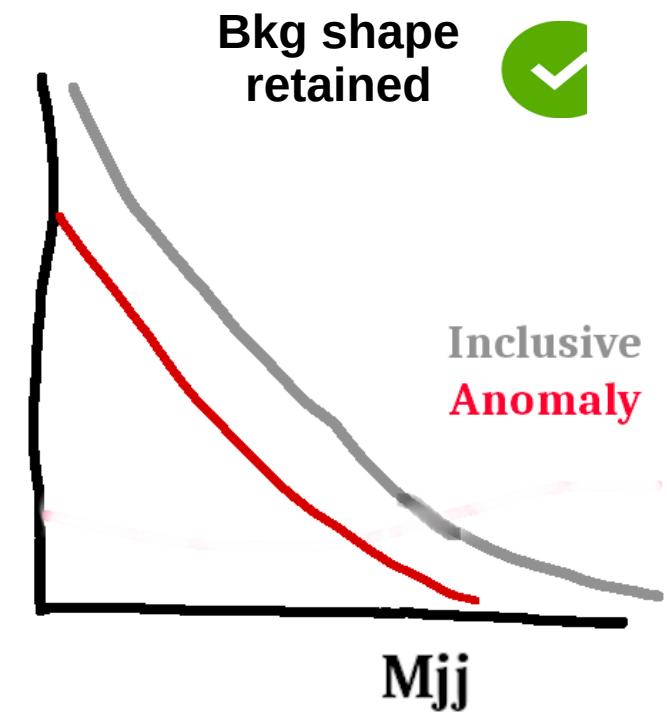
Lets let ourselves be surprised again!

Backup

Decorrelate with M_{jj}

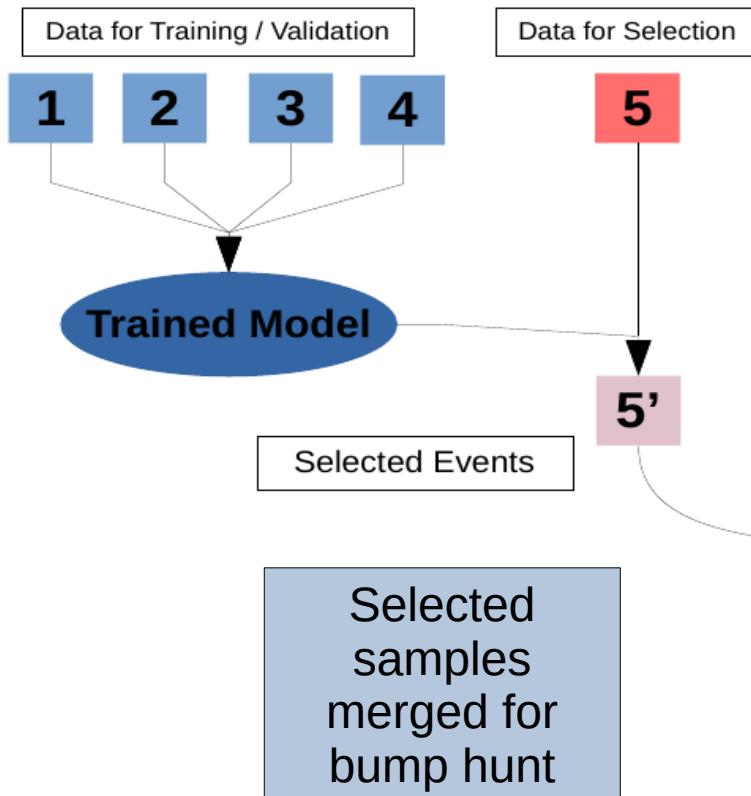


Cut with
Flat Eff.

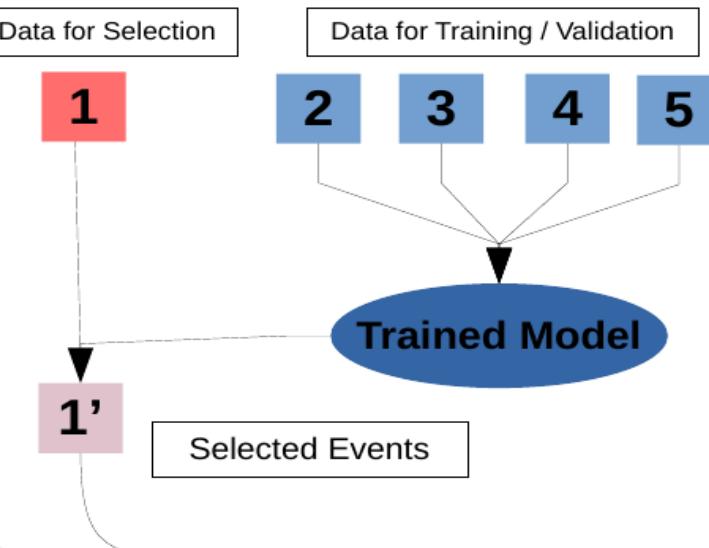


Cross Validation

K-Fold 1



K-Fold 2



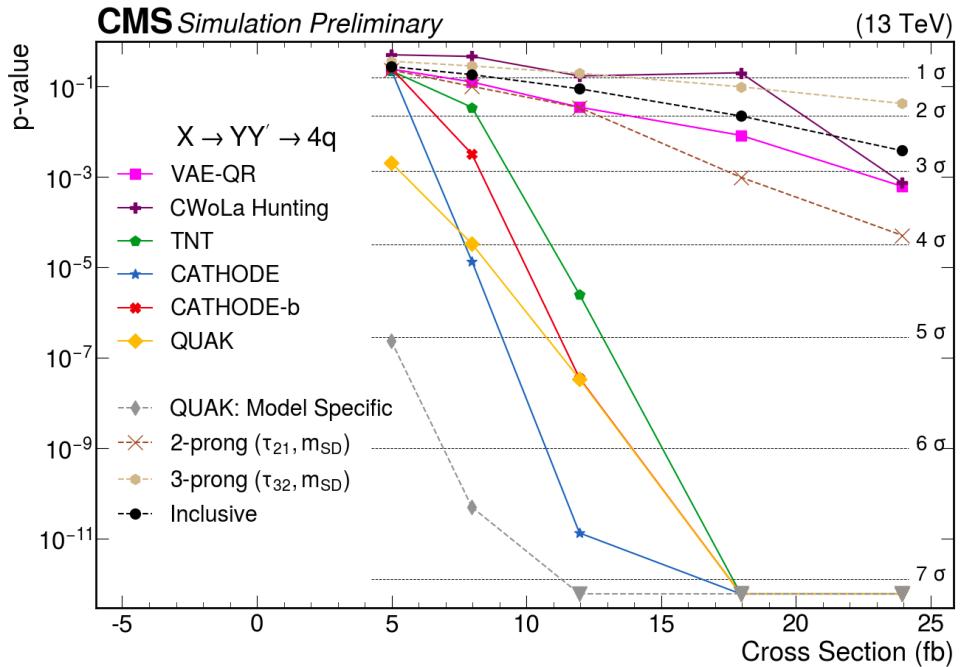
Repeat x5 total

⋮ ⋮ ⋮

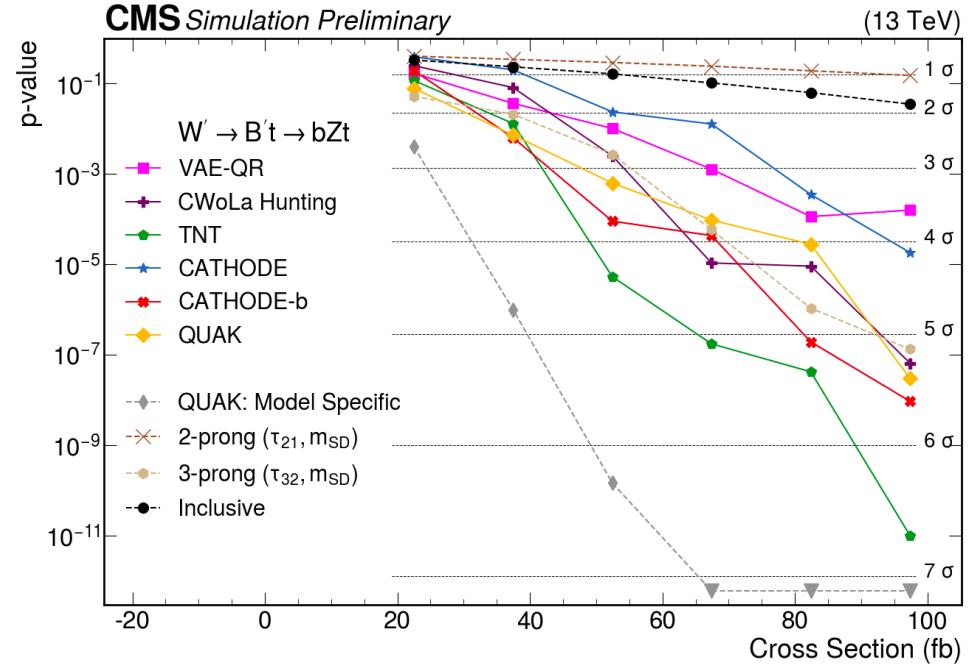
*Weakly supervised methods use additional layer
of cross val for stability (see backup)

Sensitivity

2 Pronged Signal

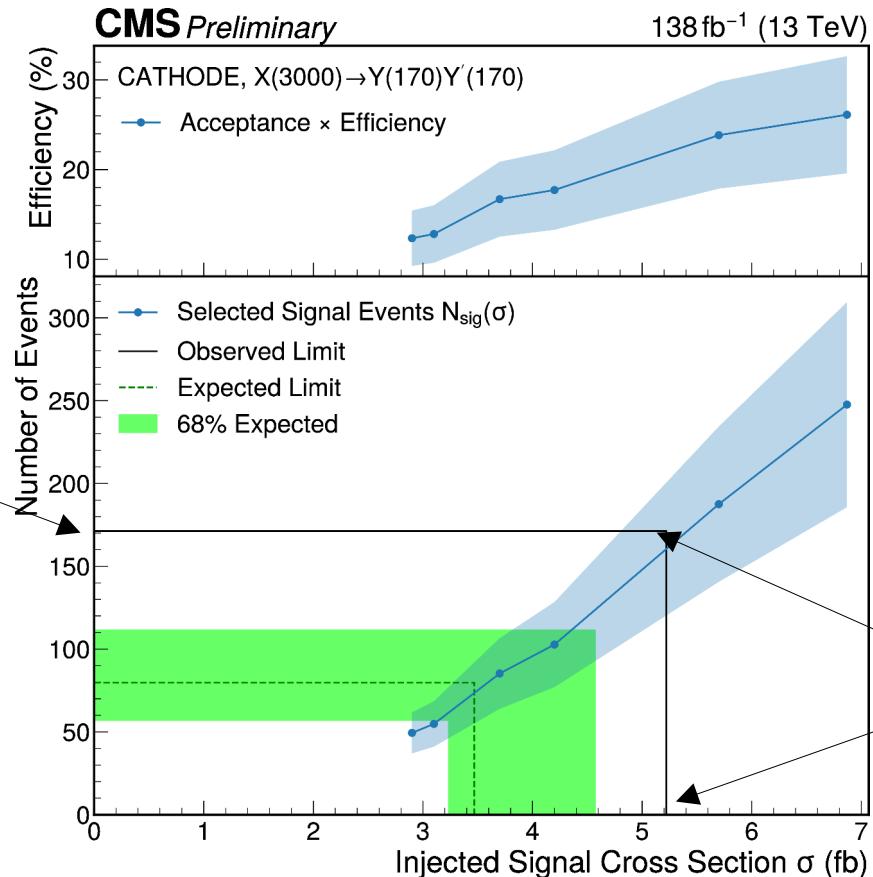


3 Pronged Signal



Limits with Changing Eff.

Limit on # of signal events in SR from fit (N_{exc})



Find
 $N_{\text{sig}}(\sigma) = L \cdot \sigma \cdot \varepsilon(\sigma)$
that matches N_{exc}
 $\rightarrow \sigma$ is limit

Input Features

Low-level features

VAE

Jet Constituents
 p_x, p_y, p_z

CWoLa Hunting

Jet mass

τ_{21}

τ_{32}

τ_{43}

N_{const}

Leptonic
energy frac.

Sub-jets b-tag
score

Hand-picked high-level features

CATHODE

Jet masses

τ_{41} 's

TNT
Same as
CWoLa Hunting

CATHODE-b

+ Subjet b-tag
scores

QUAK

$\rho = \text{jet mass} / p_T$

τ_{21} 's

τ_{32} 's

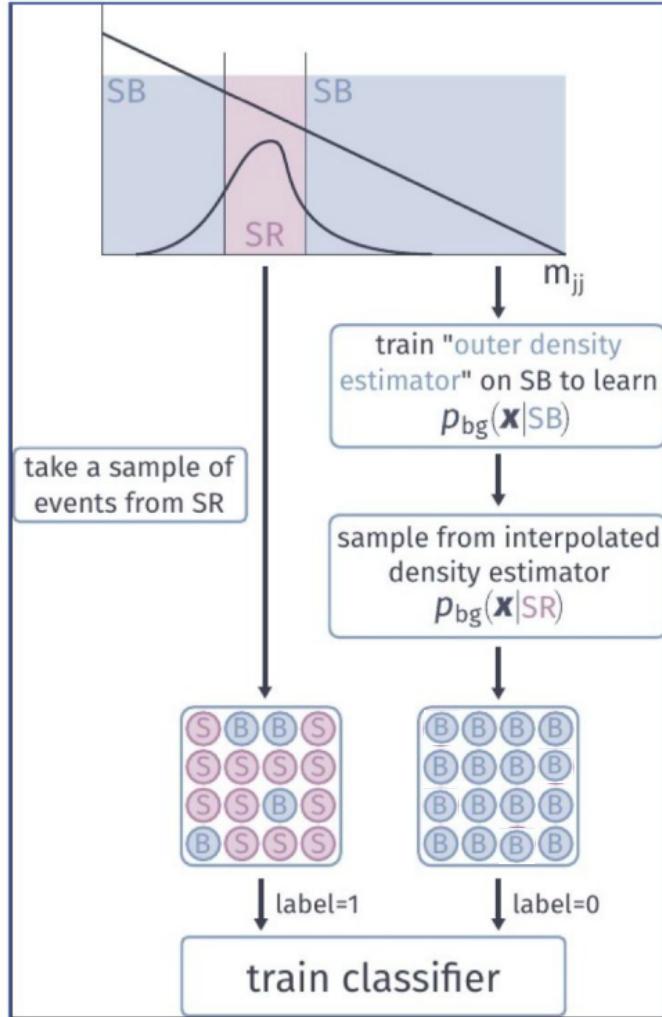
τ_{43} 's

N_{const} 's

$\sqrt{\tau_{21}} / \tau_1$

Sub-jets b-tag
scores

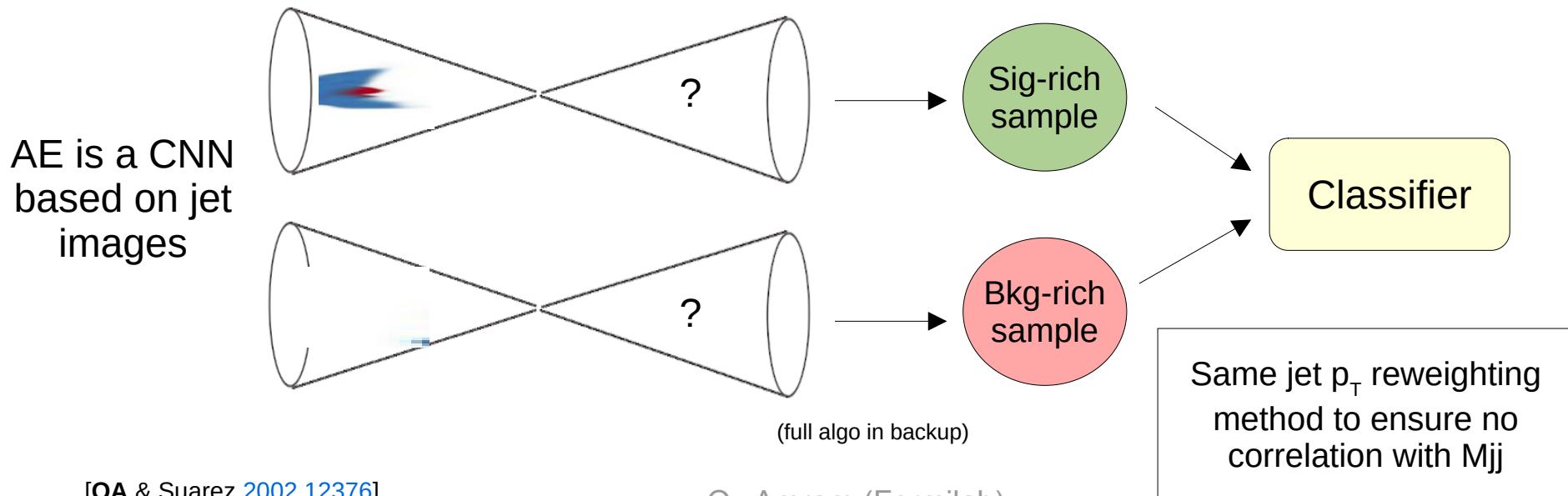
CATHODE



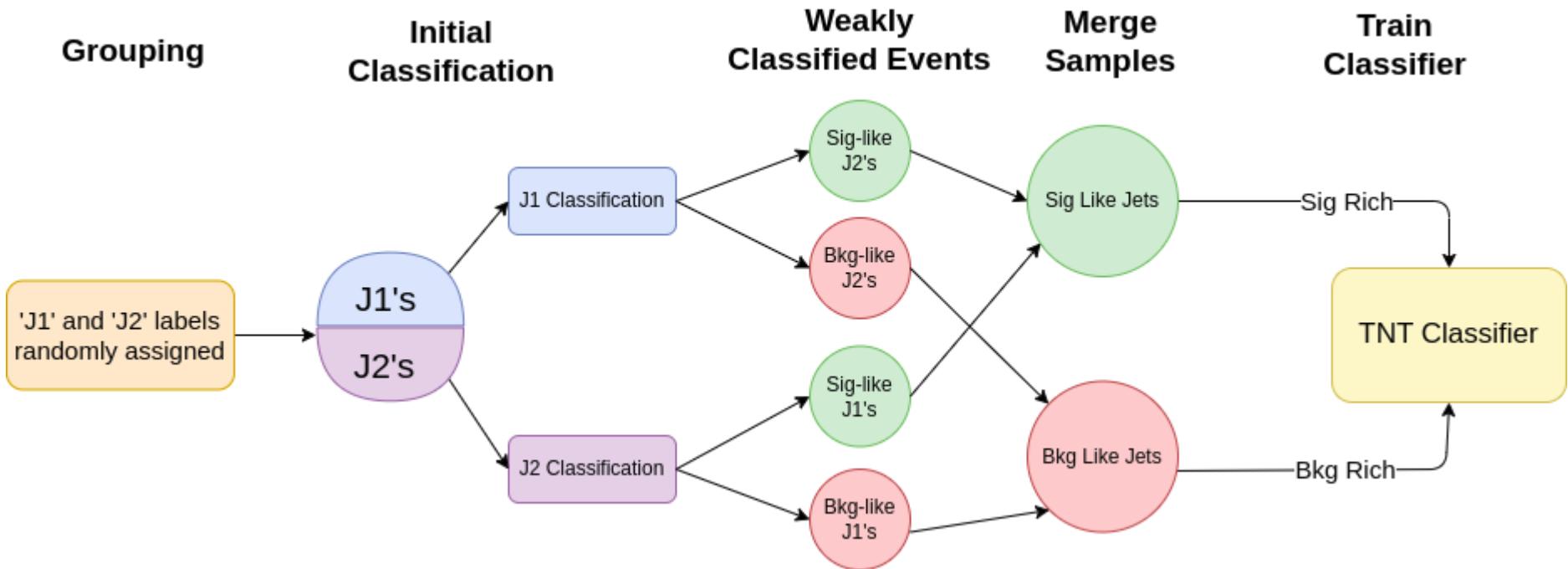
- Learn full multi-dim density $P_{\text{bkg}}(\mathbf{x} | M_{jj})$ from sidebands & **interpolate** into SR
 - ‘Normalizing Flow’
- Draw samples to construct **bkg-rich sample**
- Weak supervision btwn data in SR and interpolated bkg samples

Tag N' Train (TNT)

- Similar to CWoLa Hunting, but additional assumption that for signal **both jets are anomalous**
- Enhance purity of mixed samples by first tagging one jet each SR event with an autoencoder



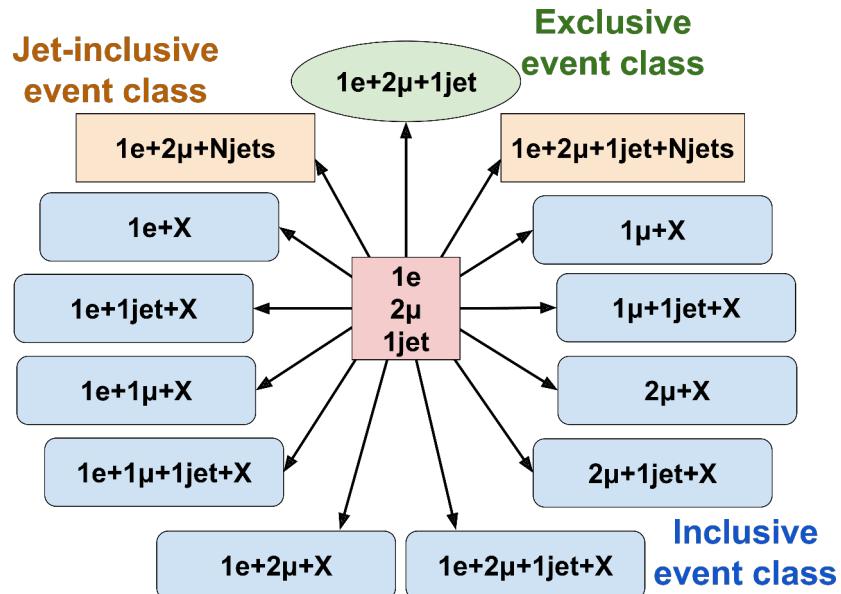
TNT Diagram



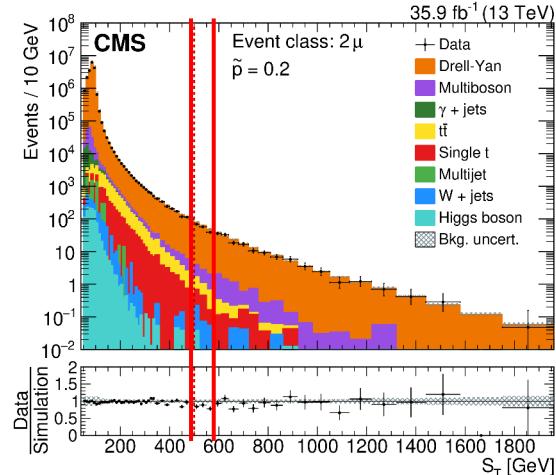
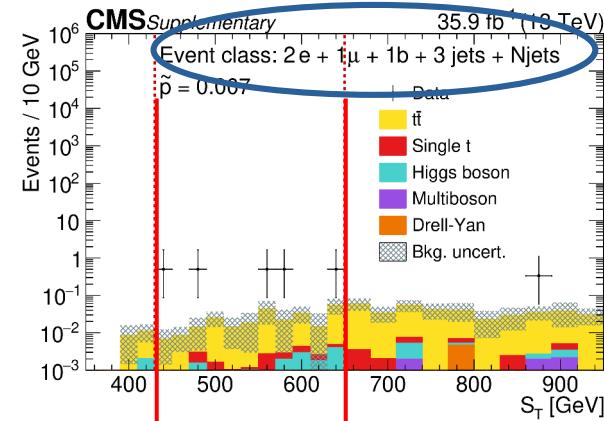
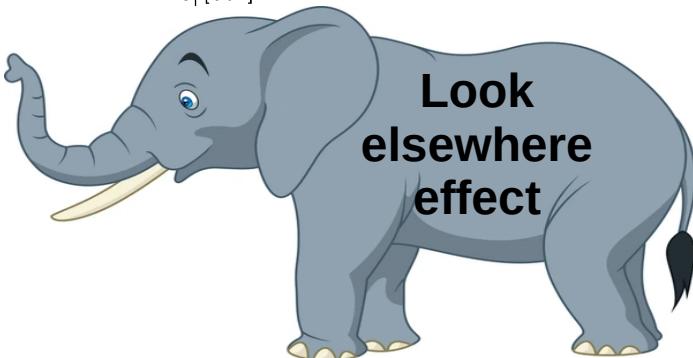
Classic Strategy

Using CMS MUSiC Search as an example

Categorize



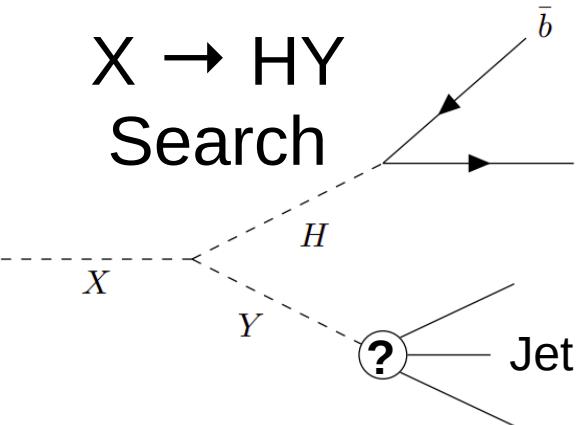
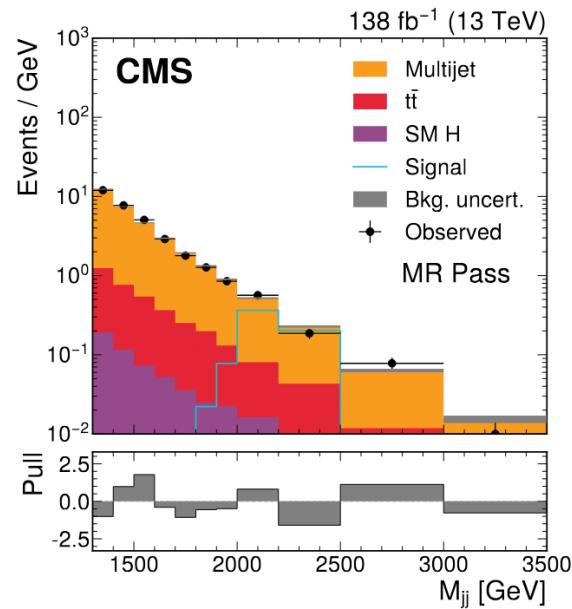
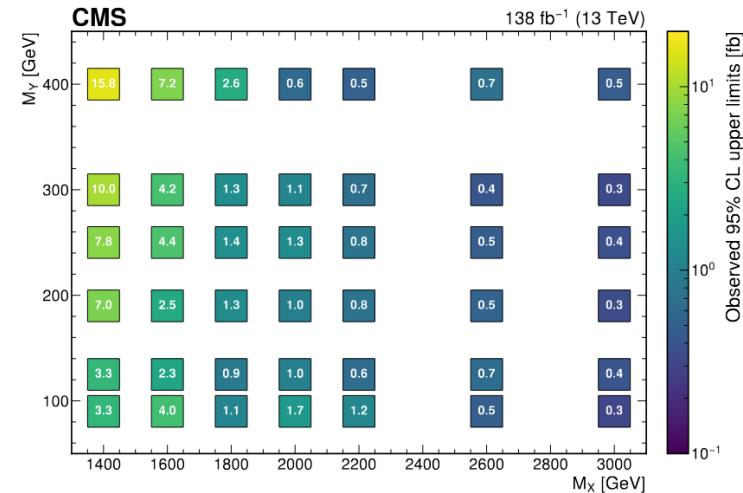
Data-MC Comparison



More Anomalous Jet Searches

New!

2509.13635

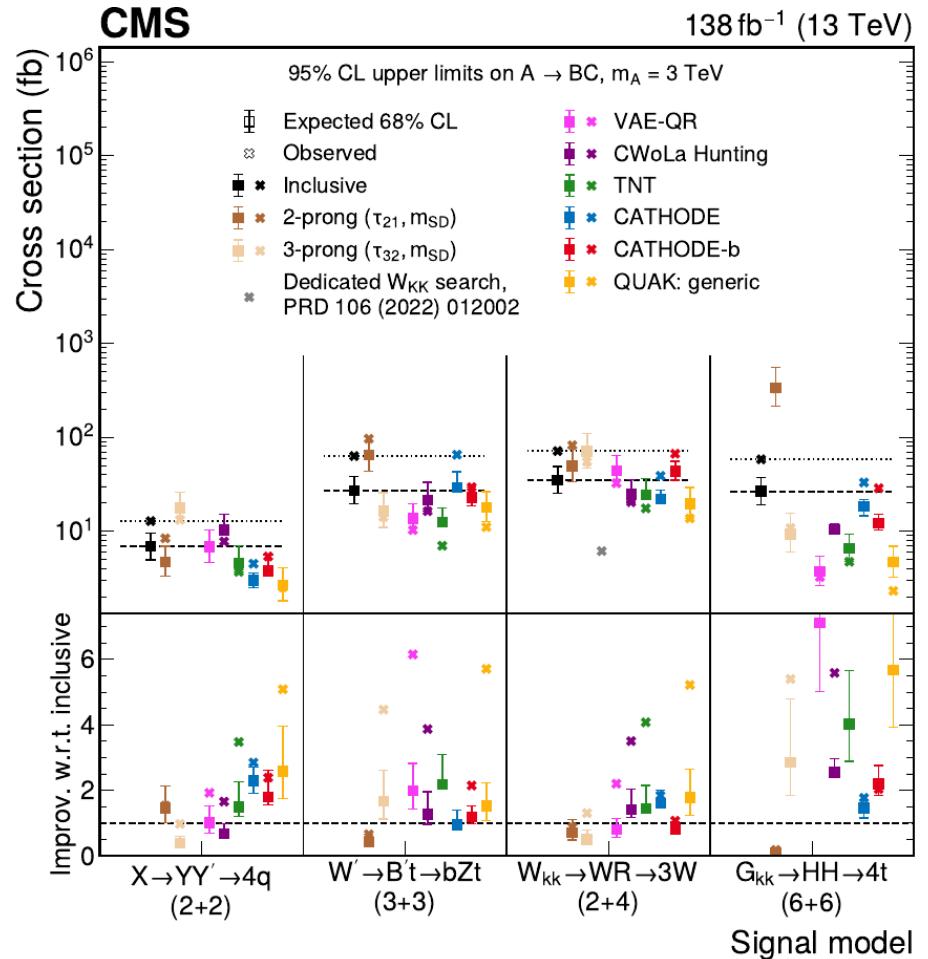


- Re-using an AE from the dijet search
- Limits on $Y \rightarrow WW$ and $Y \rightarrow b\bar{q}q$
 - ~Close to dedicated search for $Y \rightarrow WW$!

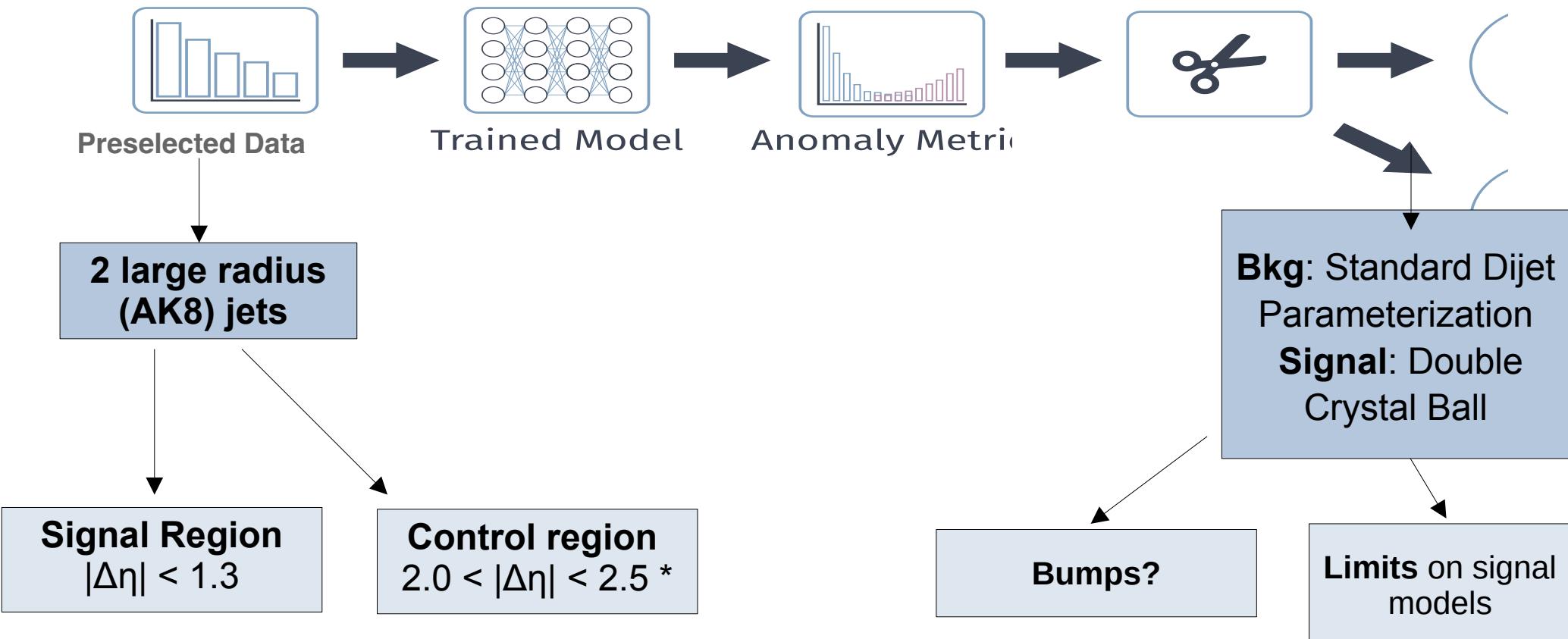
B2G-23-007

Limits

- Compute limits on benchmark from all **anomaly methods** on variety of signal models
 - Compare against **inclusive** & traditional **model-specific** approaches
 - First-ever limits on several models!
- **Anomaly detection** improves limits by $\sim 2\text{-}6x$!
 - Does not reach sensitivity of dedicated search

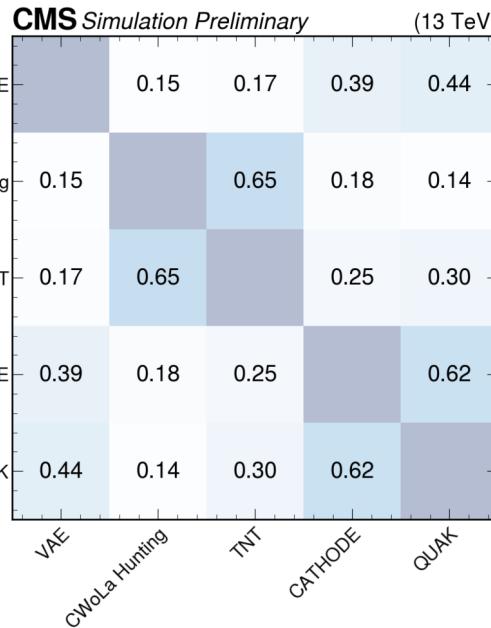


Analysis Overview

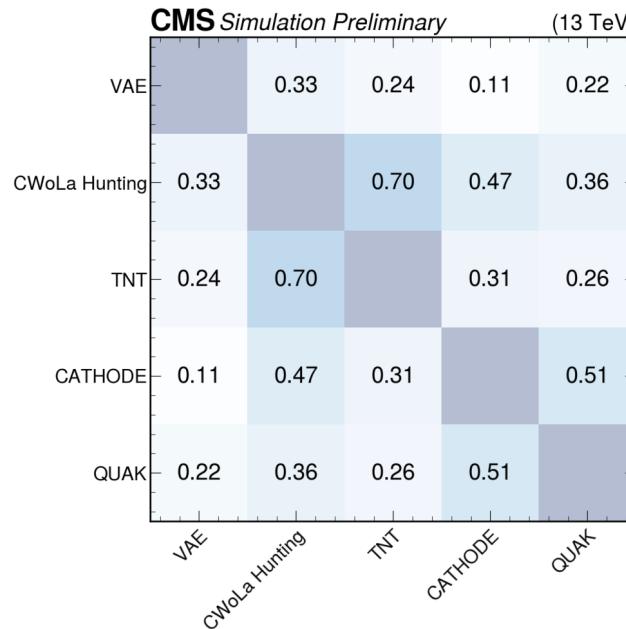


“Are these five methods just learning the same thing?”

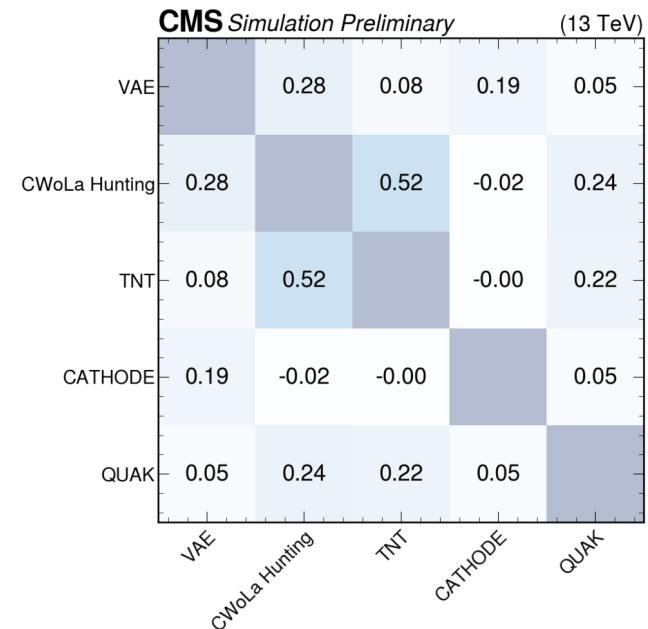
$X \rightarrow YY \rightarrow qq\ qq$



$W' \rightarrow B't \rightarrow bqq\ bqq$



QCD Bkg.

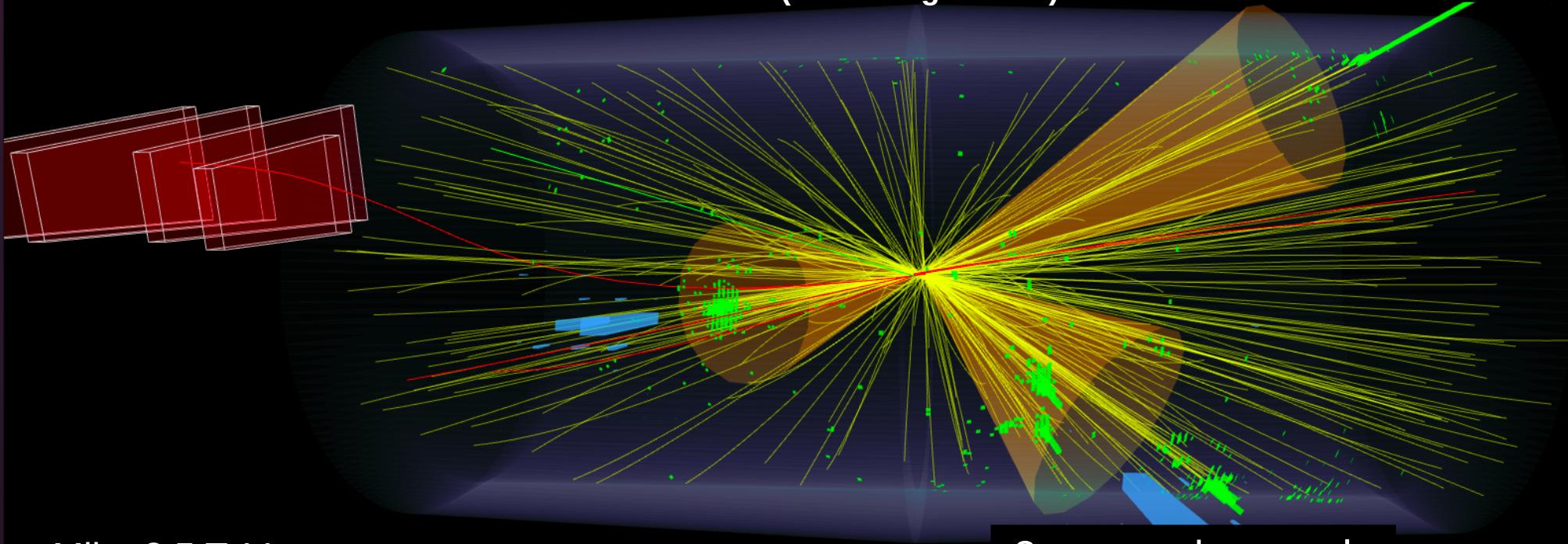


- Compute **correlation coefficients** between different anomaly scores
- Relatively **low** correlations \rightarrow methods are **complementary!**

One of our most anomalous events!

(according to VAE)

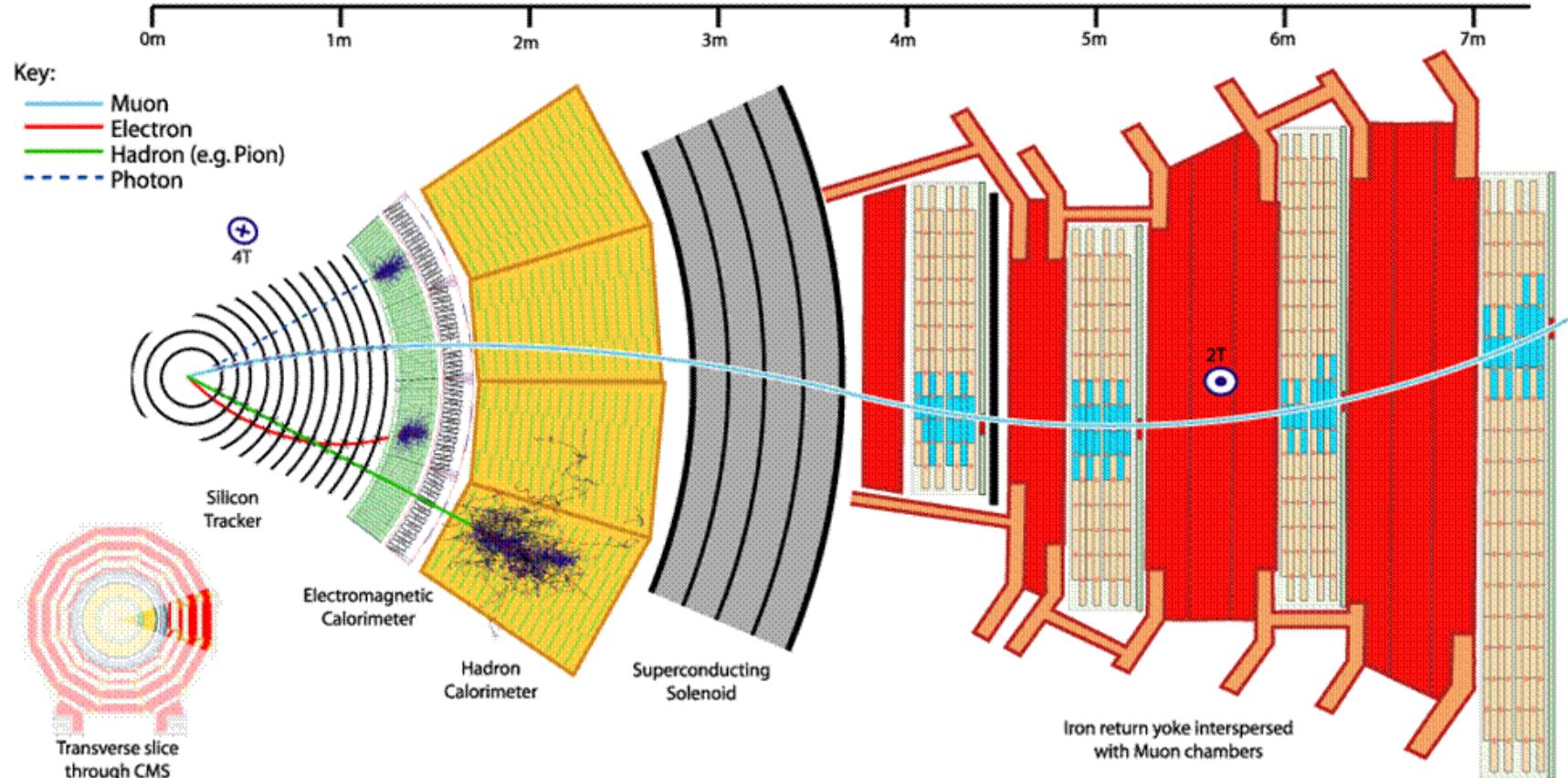
High energy
constituents
anomaly



$M_{jj} = 2.5 \text{ TeV}$
Evt: 851591650
Run: 322332
Era : 2018D

2-pronged anomaly

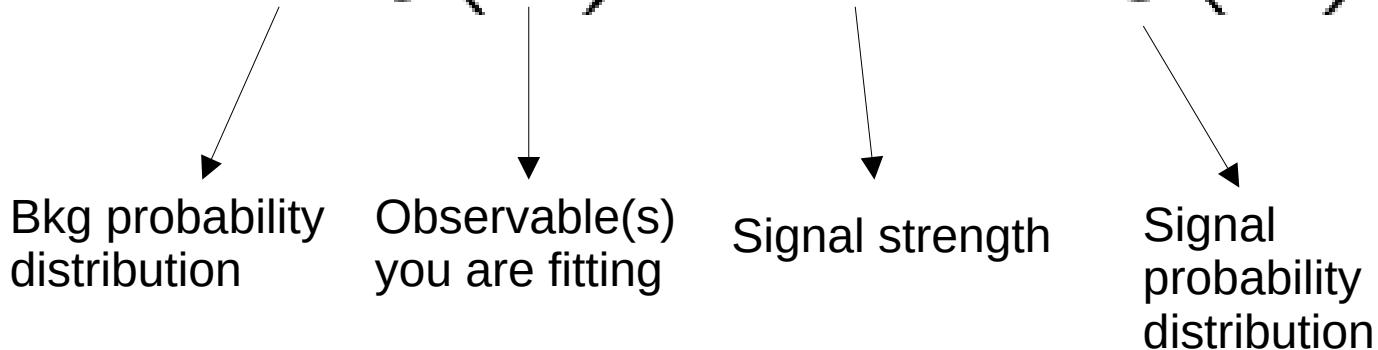
CMS Reconstruction



Standard Measurements

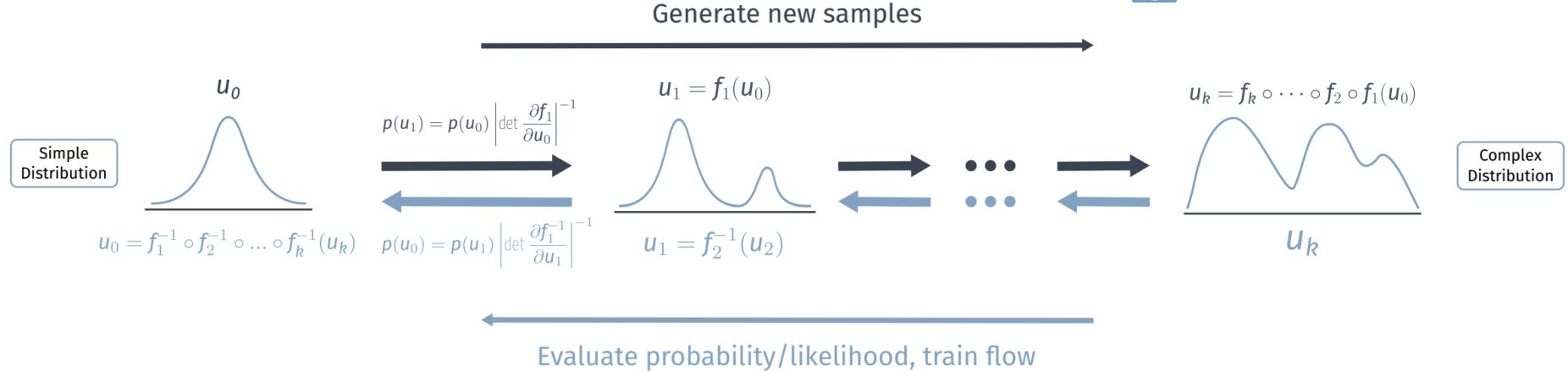
We typically formulate a search/inclusive measurement as:

$$P_b(x) + s * P_s(x)$$



NB: I'm will be sloppy with formalism, normalizations, nuisances, etc. for simplicity
Full formalism in paper / backup

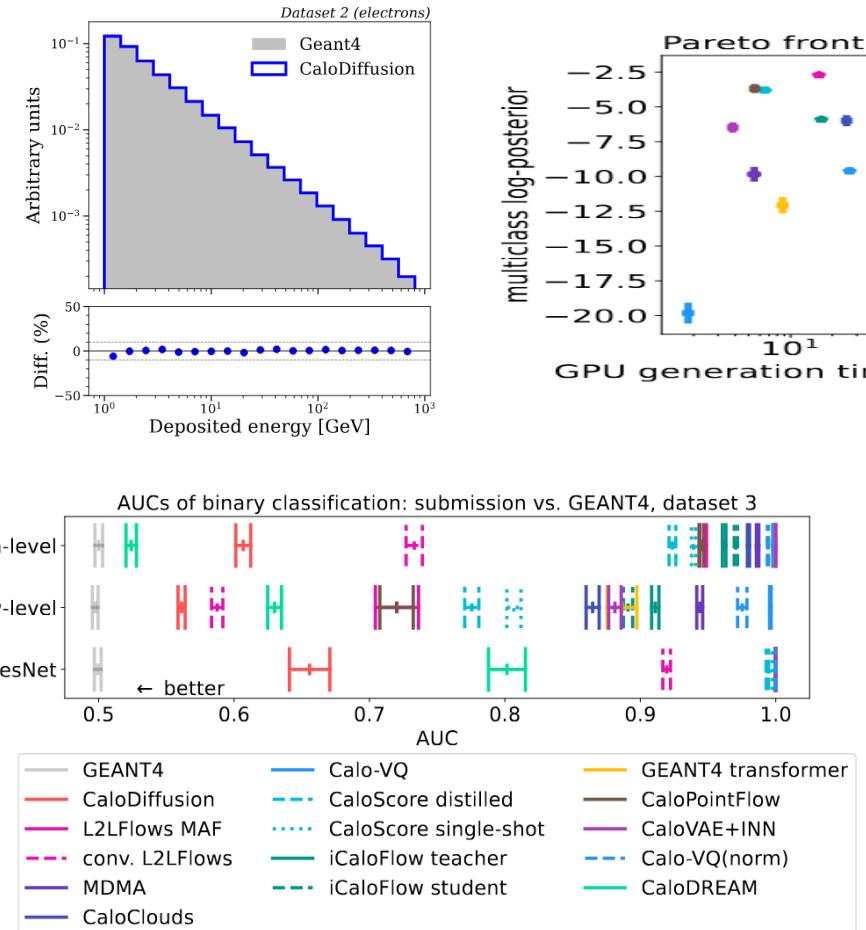
ML Model : Normalizing Flows



- Maps a complex multivariate dist. to a **standard multivariate Gaussian** via series of learnable **invertible** maps
- **Generate**: Sample from the Gaussians → apply maps ‘forward’
- **Evaluate the density**: Apply inverse maps to data, evaluate likelihood of Gaussian
- Density for fitting, generation for visualization

CaloChallenge Results

- Significant advance in SotA
 - First time AI showers not ~100% distinguishable from Geant
- Diffusion / Flow Matching models have best performance
- Tradeoff between quality and generation time



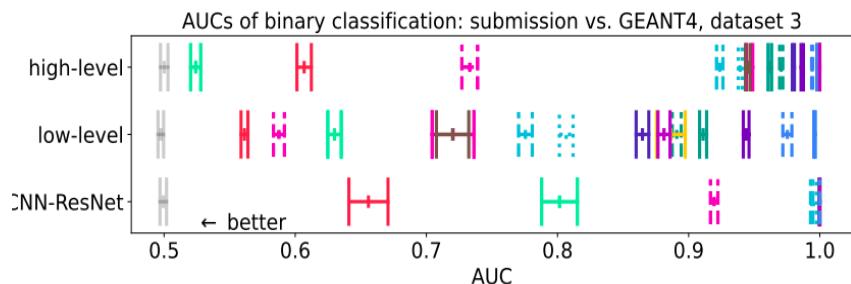
Performance Comparison

- Calodiffusion performed very well in CaloChallenge
- New benchmark in quality at time of publication
- Top-2 in quality on all datasets in final evaluation
 - Out of 50 total submissions

Comparisons at time of publication

Dataset	Classifier AUC (low / high)		
	CaloDiffusion	CaloFlow	CaloScore v2
1 (photons)	0.62 / 0.62	0.70 / 0.55	0.76 / 0.59
1 (pions)	0.65 / 0.65	0.78 / 0.70	- / -
2 (electrons)	0.56 / 0.56	0.80 / 0.80	0.60 / 0.62
3 (electrons)	0.56 / 0.57	0.91 / 0.95	0.67 / 0.85

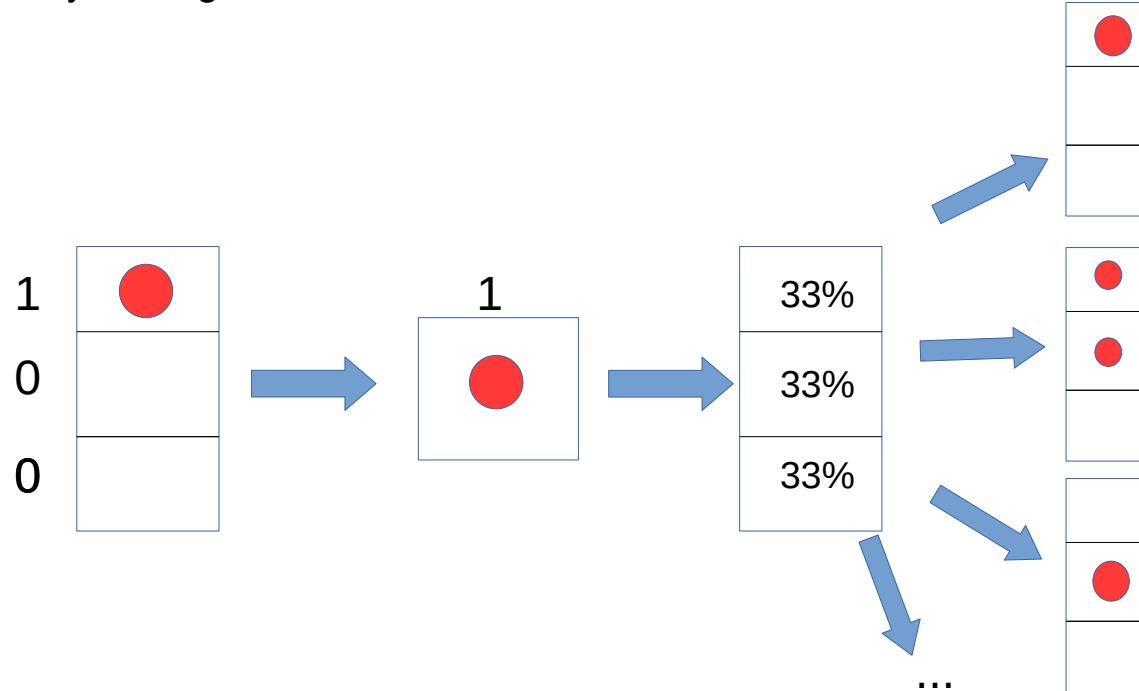
Final CaloChallenge Results



CaloDiffu

Sparsity-Based Sampling

- Compressing data naturally results in ‘smearing’
- Instead of fractional sharing of energy, use fractions as **probabilities** for each cell to be non-zero
- Random sample from these probabilities to pick non-zero cells
 - Require at least one to be non-zero (avoid energy loss)
- Split energy evenly among chosen cells

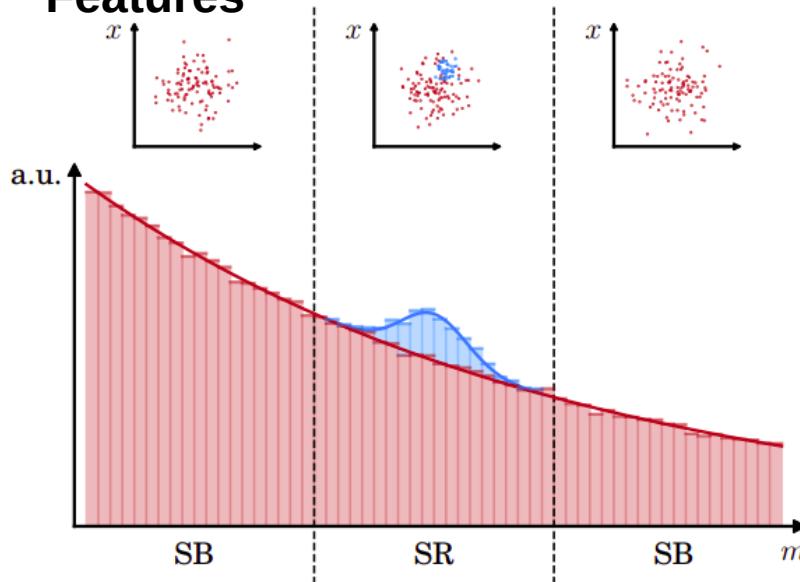


HI-SIGMA

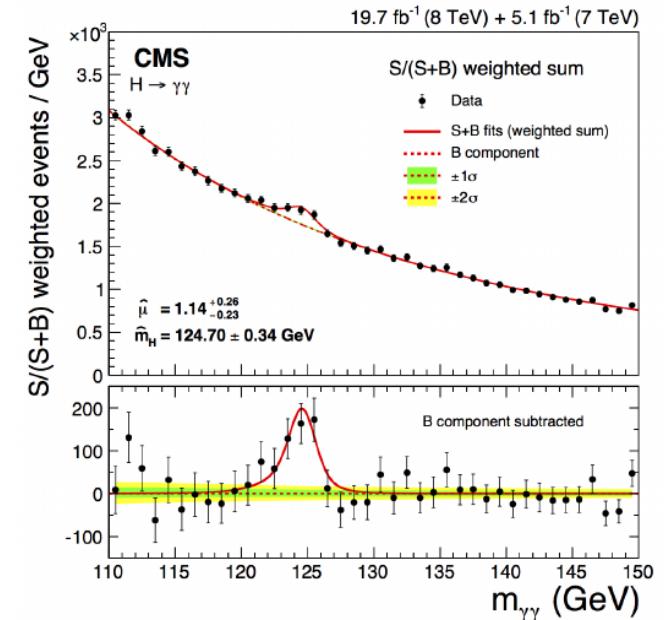
$$P_b(\vec{x}) = P_b(\vec{x}|m)P_b(m)$$

(CATHODE)

Features



1D Parametric Function



We have been doing this anomaly detection for a while, but mostly haven't been using the learned density

2109.00546

Oz Amram (Fermilab)

HI-SIGMA

$$\frac{P_b(\vec{x}|m)P_b(m)}{\text{_____}} + s * \frac{P_s(\vec{x}|m)P_s(m)}{\text{_____}}$$

ML model trained on
data sidebands,
interpolated into SR

Standard
parametric
functional form
(eg polynomials)

ML model trained
on signal MC

Standard
parametric function
(eg Gaussian)

And then you fit!

Resonant / non-
smooth bkg's can be
learned from MC