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CMS DETECTOR STEEL RETURN YOKE
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CMS Experiment at the LHC, CERN
Data recorded: 2011-Dec-01 14:35:39.907994 GMT
Run/Event/LS: 182798 / 2268703 / 117 -
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2012: A watershed
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Before & After

Pre-2012

@ QUARKS @ LEPTONS @@ BOSONS (@@ HIGGS BOSON

@ QUARKS @@ LEPTONS @@ BOSONS (@ HIGGS BOSON
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Before & After
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Simulation-
based
inference

Machine learning
in

particle physics ? ‘-

Represen- (
cos tations/
Architectures ’
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@ QUARKS @@ LEPTONS @@ BOSONS (@ HIGGS BOSON

iml-wg.github.io/HEPML-LivingReview
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Lacking clear targets, we should cast our net as
wide as possible

And hope to get ‘lucky’!

How can we prepare?

Oz Amram (Fermilab)



Radioactivity Muon Cosmic Microwave
(1896) (1936) Background (1964)
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“Who ordered that?” — I.I. Rabi

Arguably many others as well!
Kaon, Parity Violation, CP violation, neutrinos, neutrino oscillation, dark energy, ...



History of a ‘lucky’ discovery

From 2024 historical reflections

from discovery team (link) Oz Amram (Fermilab)
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https://link.springer.com/article/10.1007/s10509-024-04322-6

* In 2006 an undergrad was tasked with looking through archival
data from the Parkes telescope to look for bright sources

From 2024 historical reflections
from discovery team (link)
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https://link.springer.com/article/10.1007/s10509-024-04322-6

* In 2006 an undergrad was tasked with looking through archival
data from the Parkes telescope to look for bright sources

* Computationally limited, they analyzed a portion of the data
each week and inspected the results ‘by eye’

— ~1 plot a week, then discussed with their advisor
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https://link.springer.com/article/10.1007/s10509-024-04322-6

An Anomaly!
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This first discovery
generated community
Interest & skepticism

A few years later other ‘Fast
Radio Bursts’ (FRB) were
found by HTRU collaboration

Today: several FRB's per
day recorded

Their astrophysical origin is
still poorly understood
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High quality scientific
iInstrument/data

Clear indication of outlier
(luminosity)

Understanding of backgrounds

Short analysis timescale (weeks
not years)

A curious young scientist
(undergrad) inspecting the data
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High quality scientific
iInstrument/data

Clear indication of outlier
(luminosity)

Understanding of backgrounds

Short analysis timescale (weeks
not years)

A curious young scientist
(undergrad) inspecting the data

How can we scale these
elements to modern
massive, complex
experiments??
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High quality scientific
iInstrument/data
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Ingredient
High quality scientific data
Clear indication of outlier

Understanding of
backgrounds

Short analysis timescale

A curious young scientist
iInspecting the data

Al Technology
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Ingredient
* High quality scientific data

@ar indication of o@

* Understanding of
backgrounds

* Short analysis timescale

* A curious young scientist
iInspecting the data

Al Technology

| Anomaly Detection |
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How do you k

now which of these Is ‘anomalous’?
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Anomaly Detection

The LHC Olympics 2020 * Focus on a single
A Community Challenge for Anomaly topology at a tlme

Detection in High Energy Physics

* Entirely data-driven

* Novel ML methods to
reduce bkg

arXiv: 2101.08320

Oz Amram (Fermilab)
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https://arxiv.org/abs/2101.08320

Physics result:
arXiv:2412.03747
ML details:
arXiv:2512.20395
Jet Uncertainties:
arXiv:2507.07775

Jet

Jet

* First CMS search to use anomaly detection
* Heavy resonance (A) — daughters B and C — 2 jets

 Employed five separate anomaly detection methods!

24


https://arxiv.org/abs/2412.03747
https://arxiv.org/abs/2512.20395
https://arxiv.org/abs/2507.07775

‘p\ Particle Jet Energy depositions

In calorimeters

Sprays of O(50) particles produced via
strong force

A playground for HEP-ML!

Oz Amram (Fermilab)
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Don’t Judge a Jet by its Cover

Typical jet Anomalous jets
* One central axis (prong) * Multiple prongs
* From primary vertex * Displaced vertices
.« . 777

Oz Amram (Fermilab)
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Events / 100 GeV
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Learn your bkg —
look for outliers
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How to identify

Increasing Model Dependence

anomalies? — |
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Lookin

Train ‘Autoencoder’

L AR

o B -

g for Outliers

Training Sample from data sideband

Oz Amram (Fermilab)
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Looking for Outliers

Apply Autoencoder Data from signal region

Take difference

Oz Amram (Fermilab)

31



Input Jet Reconstructed Jet
(100x3) (100x3)
Encoder = Decod
Latent : Space
a ™ B
z—>  gsz|x) J‘ —" zZ —> polx | 5) — > 3
= S,
Standard Devaition
T Reconstruction Loss + KL Divergence

Latent space forced to be Gaussian
thru additional term in loss

* Jet represented by up
to 100 highest p

constituents (p,, p,, p,)

* 100x3 matrix
compressed to latent
space of size 12

* Trained on jets from
data control region

32



A

e -
//,
/
|

\\ ~

Learn your bkg —
look for outliers

How to identify
anomalies? ~

/ Look for local N
overdensities of signal
(collectlve anomalles) >

Increasing Model Dependence
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Weak Supervision s gsmmm

Train on two mixed samples ° Train 3 ClaSSiﬁer
S L L L N between signal-rich
::::: ::::z and background-
00066 | 06666 rich mixed samplgs
O®®BE ®®®B®® — Learns to identify
@000 | (O0OOOO signal vs. bkg
L o ’ * Performance
\1 0 / changes with
_ amount of signal in
Classihier training data

[Metodiev, Nachman, Thaler, 1708.02949] Oz Amram (Fermilab) 34


https://arxiv.org/abs/1708.02949

Aka ‘Classification Without
Labels’ (CWoLa)

Train on two mixed samples * Train a classifier
Sl | MbedSewe? | between signal-rich
O®® How can we construct these nd-
5: mixed samples in data? nples
06 N _ Jentify
®0® 3 different methods employed |
‘ — ’ * Performance
1 0 changes with
| amount of signal in
Classifier tra|n|ng data

[Metodiev, Nachman, Thaler, 1708.02949] 35


https://arxiv.org/abs/1708.02949

CWolLa Hunting

mixed sample 2  Assume signal is a narrow
. resonance
w
EQ « Guess a mass window where it lives
® \ D ~ Train signal window vs. v
= using weak supervision
O

background :
* Repeat procedure, scanning over
different mass windows

- (2x6 windows used)
ﬁ > « Need to be careful about
Mres correlations btwn feats & mass

[Collins, Howe, Nachman 1902.02634] o0



https://arxiv.org/abs/1902.02634

Data Interpolated
from SR bkg

CATHODE P00 |0eee®
Gen Al to interpolate bkg
Into SR to construct sample

[Hallin et al 2109.00546] L
Sig-rich
: ? R
Tag N’ Train | \
Looks for pairs of

) Classifier
anomalies,

- |
purifies samples T~ 5 Bkg-rich /
.//'/! ' > | sample

[OA & Suarez 2002.12376] Oz Amram (Fermilab) 37



https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2109.00546

Data Interpolated
from SR bkg

00000 00000
CATHODE 90000 || €0000
Gen Al to interpolate bkg ) 88822

Into SR to construct sample

[Hallin et al 2109.00546] L
' A

Very similar to r LT T % &‘
coincident AD e 2

approach g B

developed at SLAC! ~__ g —s A,
1

2301.11368 e

Oz Amram (Fermilab)


https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2301.11368
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Learn your bkg —
look for outliers

x\\\

N

J
//

How to identify
anomalies? .

> A

/ Look for local \\\ // ~ Encode a ‘prior’ of

overdensities potential signals —

~ (collective anomalies) =~ look for similar

Increasing Model Dependence
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Quasi Anomalous Knowledge (QUAK)

Hypothetical QUAK Space

* Hybrid approach between fully
model-indep. and standard search

* Encode a prior on what a potential
signal may look like

— Use an AE trained on a variety of §
different signal MC'’s ¢
< ']2D QUAK
* Construct ‘QUAK space’ 0 g

N .

‘Bkg-like’ Loss

— Loss of signal AE vs bkg AE

* Select events with low sig loss and 0.0
high bkg loss

Select

: Park et al 2011.03550
Oz Amram (Fermilab) [Park et a ]
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https://arxiv.org/abs/2011.03550

Arbitrary units

Understanding Anomalies

Investigate features of most anomalous events!

Compare against regular events

CMS Simuiation (13 TeV)
T T T L
CMS simuiation (13Tev) CMS simuiation (13Tev) CMS Simuiation (13 TeV) TNT: W - B't— bzt
T T T T T T T T ®7F T T T T T ] wn T T T T T T T T T ~70 excess
TNT: W' > B't —» bZt, ~70 excess = TNT: W' > B't —» bZt, ~70 excess "é TNT: W' - B't - bZt, ~70 excess
2.0 1 Alljets Seb 1 Alljets S8 3 Alljets b m
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pa § «©
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. e} = | T32
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msp (GeV) DeepCSV score Tap LSFs feats
Il

Il Il 1
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Permutation score

v Matches characteristics of injected signal

W - B't,B' - bZ
M, = 400 GeV
Oz Amram (Fermilab) 41



Uncertainties

L
CMS simulation (13 TeV)
) ]
‘= 30 W matched (2 pronged)
Soq boEwe gy
(a) 8 27 — PYTHIA 2
q 2 6 M ) . X°/ndof=11/10
& . 2 = 2.0F == PYTHIA, reweighted
a, s L, 2 a |
a - 2 5 - L
ol | ™= 2 o) €= ¢ . <’
. @) E : 3 10F _ -
05F

In(0.8/A)

0.0
. . 1.5= d —— — — ——
%% jet = I I Waubjet = H LPR(splitting) o P ) ;
subjets splittings «. o :
0.0 0.2 1.0

0.4 0.6 0.8
DeepAK8-MD W Tag Score

Use physics d_omaln knowledge Account for data/sim domain shift
to factorize problem

Developed novel procedure
Separate paper to calibrate Al-classification

arxXiv:2507.07775 )
of anomalous jets!

Method now standard
within CMS, employed by
multiple (5+) analyses! Oz Amram (Fermilab) 42



https://arxiv.org/abs/2507.07775

Validation on a real ‘anomaly’

‘Rediscovering’ boosted top quarks in data with
anomaly detection!

138 fb ! (13 TeV)

x10° 138 fb—" (13 TeV)
L I L B A A A

C F
[ T § o - CMS ¢ Data
f ,CDIIVIIS ¢ Data ) ] Anomaly ; ZOOO?ﬁ;f;nZ:izaly tag I QCD multijet
o 4| Prefiminary B QCD multijet | Detection! = - 145.250 GeV SR [ ki
S W tW and V+jets | O 15001
o \ | > L o w
AT LI L ‘

Lz

w
—
o
o
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Fit unc.
2
Modified
1 ion* of = 14F
version® o - 1fe o0 0o e e e oo oo .o‘**+*++
TNT method Soeb. .
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Oz Amram (Ferm”ab) *Training setup modified to target pair production rather than 43
a heavy resonance, everything else unchanged



Search Results

No significant anomalies from any of the five methods

107
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Oz Amram (Fermilab)
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CMS 1381b-1 (13 TeV)

3 TeV resonances E

# 30 significance VAE-QR ]
o 5o significance + m CWola Hunting 1

14

* "How strong of a signal
do | need to get an
expected 30/50
excess?”
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What’s next?

Oz Amram (Fermilab)

46



arXiv:2504.13249

New TO pOIOQ ies Brennan, Vami, OA et al

Example signal

* Expand extend methods to
new signatures beyond jets
* One program : Resonance + X

~ Motivated by ‘non-minimal’
dark/Higgs sector models

* Look for a resonance produced
In association with other
‘anomalous’ stuff (X)

— Eg di-tau+X or di-muon + X

g

g

Significance of AD method

0 0.5 1 1.5 2
See also search for X - Higgs+X in backup Significance of standard method A7


https://arxiv.org/abs/2504.13249

Trigger

* Trigger rejects >99% of events
 What if we aren’t saving the new particles ?

detector igh-level data

collisions L1 trlgg Add AD to trlggerl trigger analysis
40,000,000 110,000 5000
events/sec events/sec events/sec

Oz Amram (Fermilab) 48



Anomaly Detection in Trigger

* Recently CMS & ATLAS have e
deployed anomaly detection TL 20241
triggers for the first time!

* Significant resource constraints!
- FPGA, operate at 40 MHz

his 4 ml  [§ Qkeras

AXOL1TL CMS-DP-2023-079

CICADA CMS-DP-2023-086 ,
GELATO ATL-DAQ-SLIDE-2025-362 Oz Amram (Fermilab) 49



https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2938881?ln=en

An Anomalous Event

CMS Experiment at the LHC, CERN
' Data recorded: 2023-May-24 01:42:17.826112 GMT
é Run / Event/LS: 367883/ 374187302 / 159

A uniqgue AXOL1TL
event!

Very busy, 11 jets + 1 [ME—=
muon

Oz Amram (Fermilab) 50



How can we broaden the scope of these AD searches in HEP?

- beyond resonances, using AD triggered data, ...

How can we maximize the physics reach of realtime AD systems?
— AD robust to changing conditions, build invariances, ...

Where else can these AD methods be applied?
— Other experiments, fault detection, data quality monitoring, ...

N
J

51



Ingredient
High quality scientific data

Clear | tion of outlier

Understanding of
backgrounds

Short analysis timescale

A curious young scientist
iInspecting the data

Al Technology

| Anomaly Detection |

Generative Models

52



* Classic bump hunt

- Smoothly falling
background, localized
resonance

- 1D fit
» Generative models:

— Extend this idea to higher
dimensions

S/(S+B) weighted events / GeV

19.7 o' (8 TeV) + 5.1 fb™' (7 TeV)

x10°p
L CMS
350

S/(S+B) weighted sum

SB

SR

SB
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2506.06438
OA & Szewc

Example 5D (!) fit of HH - bbyy

® & ’
. - by |
T e Ik
, — Bkg a0
x* / ndof = 24 / 30 — sig §
= 3000 —— Total Fit H10 — . .
s oo um unt in ni
& 2000
5 [} [}
>
irau dimensions

|
1 5 ; ‘ | | n
AT NN I * Extends ‘simulation
100 120 140 160 %Z S, B! +. .%mf ++ ] . y =
e T based inference’ ideas to

(biF{vr’lJiT/ry\g only for visuaI;zatiozs;l)m .
data-driven bkgs!

Data - Bkg

curenty [ el o |
g bt * More work on uncertainty
se 4 7 % quantification &
. ;1 gam e robustness needed|
0

0
Signal Strength 54


https://arxiv.org/abs/2506.06438

Ingredient
* High quality scientific data
* Clear indication of outlier

* Understanding of
backgrounds

@nalysis times@

* A curious young scientist
iInspecting the data

Al Technology

| Anomaly Detection |

Generative Models

95



50000

§ oo, * Simulation crucial in all

g HEP analyses

g * Computing budgets can't
keep up with data rate

0

2021 2023 2025 2027 2029 2031 2033 2035 2037

* ML-based fast sim.

Review Article 2410_21611

CaloChallenge 2022: A Community Challenge for n GEd ed fO r H L' L H C '

Fast Calorimeter Simulation

How would our science
change if simulations took
- a week/day/hour not ~6 months?

56



https://arxiv.org/abs/2410.21611

‘CaloDiffusion’

Goal : Train a generative ML model to mimic physics based
simulation (Geant) with high accuracy & significant speedup

Pure Noise Noise + Image Real Image

?—”ﬁxt1|xt)
@H —~@® 6z H

Xt|xt 1)

Q

OA & Pedro
arXiv:2308.03876



https://arxiv.org/abs/2308.03876

One Innovation : Irregular Geometries

Real scientific instruments unlike perfect images, have irregular
structure

~— Can'’t natively apply your favorite ML tools (like convolutions)

Learn an GLalVi-orous embedding that maps input into regular

cylindrical structure
GLaM : Geometry Latent Mapping

Irregular Cylindrical Lylnarical Irregular
Input Input Output Output

Embed | ) 4 "\ Reverse
./

. )
©@— — @

N J 8



Average Showers

Layer O Layer1 Layer2 Layer 3 Layer 12

-~ 00000

10—3 —2 —1 100 101 2

Energy (GeV)

Layer 0 Layer 1 Layer2 Layer 3 Layer 12

o @ @ (©) @ O

0-3 10‘2 o-t 10° 10!

Energy (GeV)
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Arbitrary units

Arbitrary units

Dataset 1 (photons)

0-24 Geantd
[ CaloDiffusion

10! 10 10° 104 10° 108
Layer 2 Energy [MeV]

Dataset 1 (photons)

Geant4

10734 [ CaloDiffusion

10-54

10! 102 10° 104 10 10
Voxel Energy [MeV]

Arbitrary units

Dataset 1 (photons)

Geantd
[ CaloDiffusion

10 102 10° 10 108
Layer 3 Energy [MeV]

Dataset 1 (photons)

o
T
ol

_

i
L
.

-
o
!
L

10754

Geantd
[ CaloDiffusion

T T T T T

[ ——I

11 . H{.L_(_YYI'_Y'_U \L_ HAT- 11

75 50 -25 ©0 25 80 75 100
Layer 1 Center of Energy in x [mm]

* Calodiffusion

matches Geant to
very high fidelity
Up to 1000x speed
up
* Top-2 in quality
across all 4
CaloChallenge

datasets (50 total
submissions
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CMS High Granularity Calorimeter

* Complicated
hexagonal geometry!

* Very high granularity

~— Up to 1 million cells in
region of shower

Individual Hexagon

Wafers * Extremely sparse &
Large Cells Small Cells .
, : iIrregular
~ Novel methods to do

sparsity-based
sampling!
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Example HGCal Region : Layer 1

veoseenes Dot = 1 Cell
w0 saedtisiresrerreiitben.. . Colors denote different ‘rings’

204

Large hex
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Example HGCal Region : Layer 39

uuuuuuuuuuuuu

Scintillator!
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Preliminary Results

Layer 10 Layer 20
— 12 N
> Geantd | 3 /AN L Geant4
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Avg. Shower Phi Center

Geant

(CMS Simulation)
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Preliminary Results

D_f(]fal‘_’ Very encouraging performance!  :°
iffusion |

On track to deploy in HL-LHC
e T T 1 | | ' *

Similar methods applicable to other experiments!

Fixed target experiments, future colliders, surrogate models for optimization, ...

AN

\\\\\\\\\

=P I1A
g |7 VY

(CMS Simulation) "
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Ingredient
High quality scientific data
Clear indication of outlier

Understanding of
backgrounds

Short analysis timescale

A curious young scientist
iInspecting the data

Al Technology

Anomaly Detection

Generative Models

Al Design Optimization
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We have excellent experiments
now / near future!

Hh r" 0 £ Ggaatstes,
Lum - r R A
Pt —~ o A
DEEP UNDERGROUND 020sss00000ee
NEUTRINO EXPERIMENT Ceccccssse

But what if the particles are just
at higher energy?

Oz Amram (Fermilab)
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Beyond the TeV Scale

2023 P5 Report
P4=:2.3 The Path to a 10 TeV pCM

Realization of a future collider will require resources at a global scale and will be built through a world-
wide collaborative effort where decisions will be taken collectively from the outset by the partners. This
differs from current and past international projects in particle physics, where individual laboratories
started projects that were later joined by other laboratories. The proposed program aligns with the long-
term ambition of hosting a major international collider facility in the US, leading the global effort to
understand the fundamental nature of the universe.

ination for Steps toward regula
3 indoor air qualjl}.r

In particular, a muon collider presents an attractive option both for technological innovation and for
bringing energy frontier colliders back to the US. The footprint of a 10 TeV pCM muon collider is
almost exactly the size of the Fermilab campus. A muon collider would rely on a powerful multi-
megawatt proton driver delivering very intense and short beam pulses to a target, resulting in the
production of pions, which in turn decay into muons. This cloud of muons needs to be captured and
cooled before the bulk of the muons have decayed. Once cooled into a beam, fast acceleration is
required to further suppress decay losses.

Although we do not know if a muon collider is ultimately feasible, the road toward it leads from
current Fermilab strengths and capabilities to a series of proton beam improvements and neutrino
beam facilities, each producing world-class science while performing critical R&D towards a muon
collider. At the end of the path is an unparalleled global facility on US soil. This is our Muon Shot.

Slide from Hitoshi Murayama 3g

Aradical new
i

Excitement for Physics Case of Future Colliders

Rated Response: 1 not excite ery excited), box edges 25% quantile and 75% quantile (discrete]

104 Responses,
104 Responses. 4.0mean, 5med.
4.1 mean, 4

5

median

“Most exciting” .
future collider

option in survey of
US Early Career
HEP researchers

OA & C u m m i n gS FCC-ee Linear-ee FCC-hh 85 TeV Muon Col 3 TeV  Muon Col 10 TeV
250322834 Collider and Physics Case

105 Respanses, 103 Rosponses,
3.2 mean, 3

‘median ‘median

Responese



https://www.usparticlephysics.org/2023-p5-report/
https://arxiv.org/abs/2503.22834

uI_f"""'lfjﬁ | |

Technical Challenges

A smashing idea
A muon collider would smash high-energy muons—heavier, unstable cousins of
electrons—into their antiparticles in two huge particle detectors. Inits ability
to blast out massive new particles, it should rival a more conventional proton
collider running at an energy 10 times as high. It would also be smaller

and potentially much cheaper—if it can be built. To make a muon collider,
physicists will have to generate muons, wrangle them into compact

beams, and smash them together in the few milliseconds

before the particles decay. They'll also have to cope —— {

with radiation emanating from the muon beams. — 3 )
Graphic by Austin Fisher gf/ C \
\
-

Science Magazine
High-energy
rapid cycling
synchatron

Collider ring
(~10-km circumference)

®

e

—

Particle detector

Proton source Muon source (" lonization cooling Low-energy rapid
channels cycling synchotron

SLOW ACCELERATE SLOW ACCELERATE  SLOW  ACCELERATE ° Cooling Step : absorb + accelerate

(N » Each achieves few % cooling
- - Need O(100) steps

L . l Radio-frequency [ : Radio-frequency s Co m p I eX d eS i g n S With many
- parameters 69


https://www.science.org/toc/science/383/6690

/ ]—-v | |

Technical Challenges

A smashing idea

A muon collider would smash high-energy muons—heavier, unstable cousins of
electrons—into their antiparticles in two huge particle detectors. In its ability
to blast out massive new particles, it should rival a more conventional proton
collider running at an energy 10 times as high. It would also be smaller

and potentially much cheaper—if it can be built. To make a muon collider,
physicists will have to generate muons, wrangle them into compact

beams, and smash them together in the few milliseconds

before the particles decay. They'll also have to cope — / \
with radiation emanating from the muon beams. =

Graphic by Austin Fisher %

® ,.%@T”/“

Science Magazine
High-energy
rapid cycling
synchotron

Collider ring
(~10-km circumference)

s

Particle detector

Protonsource  Muon source lonization cooling Low-energy rapid
channels cycling synchotron

SLOW ACCELERATE SLOW ACCELERATE SLOW  ACCELERATE ° Coonnq step absorb + accelerate

i~ Required cooling performance ©oling

hot yet achieved!

Complex designs with many
parameters 70

Radio-frequency
cavity

Radio-frequency
cavity



https://www.science.org/toc/science/383/6690

Al-Optimized Cooling Designs

ool FECRMS b oo Pl ~100s param cooling
r, designs difficult to
i hand optimize
ﬂ ;
N N — use Diff. Prog.
l l Methods!
Tuned Magnets  Tuned Cavities Tuned Absorber
O€ de 6Ag+ de 0A2 ORF OA; o
0B 0A20B O0A20RF 0 A1 OB Potential for field-
shaping Al
Will benefit from collaboration with contribution!

SLAC Accelerator & Diff. Prog. Experts! 1



Kcurious young scientist
~inspecting the data

Ingredient Al Technology

High quality scientific data

Clear indication of outlier Anomaly Detection

Understanding of
backgrounds

Generative Models

Short analysis timescale Al Design Optimization

Foundation Models
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IMaye suuice.

arXiv:2108.07258

Foundation Models

Data

v
Text l ] I

!-!J Images

speechJ‘fUU\/} )

_ Structured
. Data

Foundation
Model

- e i
Training
~

e
3D Signals n‘"
—

Oz Amram (Fermilab)

Tasks )
Question P
Answering "_.

Sentiment

. . Analysis

~)
Information _
Extraction
Image
Captioning

A Object
B, ‘Rm:og nition
EL Instruction

Adaptation '
e ——_al

Following .

73


https://arxiv.org/abs/2108.07258

Data

VBF H production al < u > = 200

Foundation Models

Tasks

& Classification

~—

%_ Reconstruction

| > %} Simulation
N ’
) Mt ‘ Adaptation '
ning Foundation
P Anomaly
Detection
Robust
: Algos
?7??

Oz Amram (Fermilab)
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Foundation Models

Tasks

ﬁ‘, Classification

~——

Data

ning ' Foundation
Model

Adaptation '

VBF H production al < u > = 200
—

Oz Amram (Fermilab) 75



LLM Agents

Understands ‘the world’(?)

Given tasks, iterate,
Interpret

Physics
Understanding

Models that understand
our data

Can ‘manually inspect’ at

scale
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LLM Agents

Claude

Understands ‘the world’(?)

Given tasks, iterate,
Interpret

Models that understand
our data

Can ‘manually inspect’ at
scale
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Pre-train on 180M jets from CMS open

* One approach: data
G t fine tune on 100-1M Delphes Sim. jets
eneration Pre-train From Scratch

* “What | cannot create |
do not understand” —

Feynman

sity
o

den
(=]

0o 200 300
jet mass [GeV]

From scratch

* Many other possibilities!

Masking particles (2401.13537) , large supervised
(2405.12972), MiX gen. & sup. (2510.24066), ...

OA et al arXiv:2412.10504 -


https://arxiv.org/abs/2412.10504
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2510.24066

How to build the bridge?

PAPERCLIP (2403.08851)

CLIP fine-tuning Downstream task: observation retrieval

With Hubble observation—proposal abstract pairs Given natural language text query

Query: "barred spiral galaxy™
Optional summarization with

Hubble proposal abstracts canstrained LLM generation Text
Mixtral + Outlines =

Category: Galaxies. uwe propose M 4 Luminous  Infrared  Galaxies,  star encoder
WFC3/UVIS F336W, F438W, and h ! clusters, nuclear regions, extranuclear

FB14W observations for 8 regions, hydrogen recombination lines;

[LIRGs) in the Great clusters,  determine  nuclear  and \
Observatories all-sky LIRG extranuclear cluster destruction rates, \
Survey (GOALS) scheduled for \

| - ] ] ]
ST cycle 1 (601) \ Candidate
' =i | something similar
proprietary period of @ days v
for seX of the Go1 LIRGs, ]

for HEP/? data”

observations taken now will

provide the concurrent WFC3/ Text
encoder

UVIS imaging necessary to

reliably age-date the star ... Image

encoder

Hubble observations

What capabilities
Gt o™ could it unlock?

svhiy

Image
* | encoder

Built a text -~ data (image) mapping
with a contrastive pre-training


https://arxiv.org/abs/2403.08851

Ingredient

High quality scientific
data

Clear indication of outlier

Understanding of
backgrounds

Short analysis timescale

A curious young scientist
iInspecting the data

Al Technology

| Anomaly Detection

Generative Models

Al Design Optimization

( Foundation Models \
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c jet rejection

Previous Era: Al as Tool

‘Simple’ questions, complex answers

120 CMS Simulation Preliminary 13.6 TeV
N A A A LA R T T ]
| ttevents, pr > 20 GeV, |n| < 2.4, ,=70%
100} B c jet rejection P
udsg jet rejection 04 3 10
| Run 1 Run 2 Run 3
801 ; i X61
) j | H10°
60 |
| Y 1102
40 _ x1.0 : -
I I PPN
20[- 110
ol N L l 10°
v1 CSVv2 DeepCSV DeepJet PNET UParT UParT
(ke=0.14)

Fully connected - CNN - Graph - Transformer

Oz Amram (Fermilab)

Asking same question
for the last ten years
“Is this a bottom quark
jet?”

Now 200x better!
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Al as a Paradigm Shift

Ask new questions, only possible with Al
scientific workflows? -

Generative Models,
@Anomaly Detectiorﬂ 4 Al Design Optimization

\[Foundation Models}/

Oz Amram (Fermilab) 82

How can | deeply
understand my data?

How can | reimagine




Al as a tool

‘Simple’ questions, complex answers

c jet rejection
p— —h
o N
= (=]

o]
o

60

40

20

Fully connected -~ CNN - Graph - Transformer

CMS Simulation Preliminary 13.6 TeV
N WL R R A A BN B L B B T T 7 3
L tt events, pr > 20 GeV, || < 2.4, £,=70%
B cjet rejection
R 104
udsg jet rejection i
[ Run 1 Run 2 Run 3
= i i 61
x29 +410°
x19
I, x9.1
6.1
x3.3 ¥6.9 4102
[ 10 X5.0
. x3.2 410"
x1.8
x1.0
: g i N . ‘ 0
CSvvi CSVv2 DeepCSV DeepJet PNET  UParT UParT 10
(ke=0.14)

Al as a paradigm shift

Ask new questions, only possible with Al

Machine learning
in
particle physics

iml-wg.github.io/HEPML-LivingReview

Oz Amram (Fermilab) 83



Whatever comes next in
fundamental physics will be surprising

2006

in .IA B '.‘ s

Lets be ready for it!
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Whatever comes next in particle physics will be surprising

Lets let ourselves be surprised again!
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Backup

Oz Amram (Fermilab)
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Decorrelate with Mj)

Bkg shape
Cut with retained e
Flat Eff.

VAE Anomaly
Score

Inclusive
Anomaly

Oz Amram (Fermilab) 87



Cross Validation

K-Fold 1

K-Fold 2 Repeat x5 total

Data for Selection

Data for Training / Validation

Data for Selection

Data for Training / Validation

bl

Selected Events

Selected
samples
merged for
bump hunt

HEBNE
Selected Events
?“ S S
Ny e
All Selected Events | Q
E;ump Huﬁt
*Weakly supervised methods use additional layer 88

of cross val for stability (see backup)



103

105

1077

10—9,

10—11

Sensitivity

2 Pronged Signal

3 Pronged Signal

CMS Simulation Preliminary (13 TeV) CMS simulation Preliminary (13 TeV)
I o T T j j ) j j j j j j j j T i
¢_+\| | % 10- | | I e ‘1 o
— = i il B R [ |
, g?)_ , , \ hli— %20
XYY -4q W oBt-bzt S \'\
- —=— VAE-QR 10-3|- = VAE-QR N\ - 3a]
—— CWola Hunting —+— CWola Hunting \Aﬁ
—— TNT —— TNT ) 4G
~ — CATHODE 1075~ —— CATHODE e s
—» CATHODE-b —» CATHODE-b “ ﬁ\
QUAK QUAK . 50
- \ 10771 \ ]
4+~ QUAK: Model Specific 4~ QUAK: Model Specific
- 2-prong (Tz1, Msp) . 10-9F ¢ 2-prong (Ta1, Msp) : 6al
3-prong (taz, Msp) 3-prong (T32, Msp) ™.
-e- Inclusive LN -#- Inclusive »
B 10" .
" 70
— e ‘ I RSN RS NI v . A A
-5 0 5 -20 0 20 40 60 80 100

Cross Section (fb)

Oz Amram (Fermilab)

Cross Section (fb)
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Limit on # of signal
events in SR from fit

(N EXC)

Limits with Changing Eff.

CMS preliminary 138fo~" (13 TeV)

w
O

Efficiency (%)
3

—
o

w
o
(=)

mber of Events
3

/u/
o
S
)

Y
N
(=)

100

50

[ CATHODE, X(3000)—Y(170)Y(170)

| —— Acceptance x Efficiency//

PR T R T TS T TSN RN NN SN NN NS H NN NSRRI |

L —— Selected Signal Events Niig(0)
- — Observed Limit

Expected Limit

68% Expected

1 2 3 4 5 6 7
Injected Signal Cross Section o (fb)

Oz Amram (Fermilab)

Find
Nsig(cr): L*o*e(0)
that matches N

exc

— 0 IS limit
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Input Features

Low-level features Hand-picked high-level features

(041)1/o] IF:1 QUAK
Hunting
p=jetmass/p,

Jet mass
T..'s

T21

T32

T43

N

const

Leptonic
energy frac. \/T21/T1

Sub-jets b-tag

Sub-jets b-tag
score

sScores

Oz Amram (Fermilab)



CATHODE

/\\ * Learn full multi-dim density
=T Po( X | Mij ) from sidebands &
interpolate into SR
Pbg(X|SB) ‘ - )

takeasa;mplesgf l — NOrma“ZIng FlOW
Hiesenio | ¢ Draw samples to construct bkg-
T rich sample
* Weak supervision btwn data Iin
SR and interpolated bkg
| tabet- | tabet-o sam p I es
train classifier

[Hallin et al 2109.00546] 92


https://arxiv.org/abs/2109.00546

Tag N’ Train (TNT)

* Similar to CWolLa Hunting, but additional assumption
that for signal both jets are anomalous

* Enhance purity of mixed samples by first tagging one jet

each SR event with an autoencoder

Slg -rich
sample
AE is a CNN \

based on jet

images
T~ Bkg-rich /
— > sample

(full algo in backup)

[OA & Suarez 2002.12376]

L Classifier J

Same jet p, reweighting

method to ensure no
correlation with Mjj

93


https://arxiv.org/abs/2002.12376

Grouping

'J1' and 'J2° labels

randomly assigned

TNT Diagram

Initial
Classification

J1 Classification

J2 Classification

Weakly Merge Train
Classified Events Samples Classifier
/Sigike | -

N ' SigLike Jets ——Sig FaichT

TNT Classifier

Bkg Rich—':

' Sig-like |
N's

.\‘

.-f.

Bkg Like Jets

Oz Amram (Fermilab)
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Classic Strategy

Using CMS MUSIC Search as an example

Data MC Comparison

Categorlze . __35.91b" (13 TeV)
© CMS Event class 2u +Data Al
g 107 p=0.2 [ Drell-Yan % 10
e I . T 10°8 I Multiboson g 10°
2 ol B +jets e
Jet-inclusive xeusive 5 10 « 5 i
event class @ 10* =3"3,',e; 2103 Bl Single t
i ultijel
event class 10° W s 2 10 15 Higgs boson
. . . 102} [ Higgs boson I Multiboson
1e+2u+Njets 1e+2u+ijet+Njets 10 i 1 Bkg. uncert. 10 [ Drell-Yan
] i 1 B Bkg. uncert. <‘>
‘ 1e+X 1|.|+X ] 10—1 L 10—1
1e 10-22 ; 1072
c T T T T T T T LR DL B T
. . S 1.5E -3
‘ 1e+1jet+X F 2 1p+1jet+X ’ 85 R = 10°""200] 500 600 | 700 800 690
o £ _. Ty i T ) e
& O 500 400" 600 800 1000 1200 1400 1600 1800 !
‘ le+1p+X SrlGeV]

[ le+1p+1jet+X 2p+1jet+X J

P N
/ \\{ r

Inclusive

‘ le+2p+X H le+2p+1jet+X ’event class

~1.5k event classes

Oz Amram (Fermilab) 95


http://2010.02984/

More Anomalous Jet Searches

New!

2509.13635 - 138 fb™' (13 TeV)

CMS w Multijet

it

s SMH
— Signal
I Bkg. uncert. 7
-+ Observed

MR Pass

Events / GeV

X = HY

| TR | R | -
1500 2000 2500 3000 3500

M;; [GeV]

* Re-using an AE from the dijet search

* Limits on Y—->WW and Y—bqq

— ~Close to dedicated search for Y— WW k223007

Oz Amram (Fermilab)

Observed 95% CL upper limits [fb]

CMS 138 1b~" (13 TeV)
s T
@
S |
o [] [ B E E o B
= |
« [ B @ ® B
' EH B ] ] E
“TH 3 8 [ E o )
NN
“TH & = (] o2 |
L L | | 1 1 1 | | |
1400 1600 1800 2000 2200 2400 2600 2800 3000
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https://arxiv.org/abs/2509.13635
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-23-007/index.html

* Compute limits on benchmark
from all anomaly ods on
variety of signal models

— Compare against inclusive
& traditional model-

approaches
~ First-ever limits on several
models!
* Anomaly tion improves

limits by ~2-6x!

— Does not reach sensitivity of
dedicated search

(=)
D

Cross section (fb)
)

o

CMS 138fb~" (13 TeV)

o
s

95% CL upper limits on A — BC, my =3 TeV

[ § Expected 8% CL = VAE-QR ]
3 % Observed # » CWola Hunting =
- B * Inclusive B = TNT 3
# = 2-prong (Tz1,Msp) # » CATHODE 1
- 3-prong (132, Msp) ¥ * CATHODE-b -
- Dedicated Wk search, QUAK: generic §
*  PRD 106 (2022) 012002
...... Bt | g | g
e e
e T i L
= I m_ ¥ |
H5E " : :
. ¥

Improv. w.r.t. inclusive
i

-4 ___;;I;I B ey ‘-

"""""""i""i'ii' """" i"'li'""l' """"""""""" a

‘ n |
X-YY' =4qg W oBtobZt Wg-oWR-3W  Gg—-HH-4t
(2+2) (3+3) (2+4) (6+6)

Signal model

Very different sig. models!
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Analysis Overview

[LDDDD] - [ ] - mﬂuumuuuuﬂ] - [ o ] - <
Preselected Data Trained Model Anomaly Metri *
[
v
2 large radius Bkg: Standard Dijet
(AKS) jets Parameterization
Signal: Double
Crystal Ball
Signal Region Control region / - \ .
|An| < 1.3 2.0<|An|<25* Bumps? '—'m':ﬁO%f; Iilgna'

Oz Amram (Fermilab) 08



“Are these five methods just learning the same thing?”

X-YY - qgqg W' - Bt —» bqqg bqgq QCD BKag.

‘CMIS‘S’:"TU/?tI"OU Prel('n(ilja(y (18 TeV) CMS Simulation Preliminary (13 TeV) CMS Simulation Preliminary (13 TeV)

I 1 Fr -1 = "~ 17 ™7 L Fr~ 17 ™ = 17 77 T T T T T T T T T
VAE 015 017 039 044 VAE|- 033 024 011 022 VAE|- 028 008 019 005
CWol.a Hunting|- 0.15 0.65 0.18 0.14 CWola Hunting; 0.33 0.70 0.47 0.36 CWola Hunting; 0.28 0.52 20.02 0.24
TNT|- 017 0.65 025 030 INTE 0.24 070 0.31 0.26 T 008 052 -0.00  0.22 -
CATHODER- 0.39  0.18  0.25 0.62 CATHODE[ 0.11 047 031 0.51 CATHODE[ 019  -002  -0.00 0.05

QUAK- 044 014 030 062 ] Quak| 022 036 026 051 Quak| 005 024 022 005
“““““““““““““““““ [ e .
o < -
0(‘\\(\ '\e Q\QO O\)Y~ KN\s (\‘\\(‘q ,\é& OQQ/ \)Y* (\‘\\(9 ,\é& OQQ/ \)Y*
NS v:\ Q\\) ,\‘2‘ (e ‘2‘0 ,\‘2‘ G
O\’(b ¢ \/'b OV‘ \/'b OV‘
& 2 2

* Compute correlation coefficients between different anomaly
scores

* Relatively low correlations =& methods are complementary!
99



Mjj = 2.5 TeV
Evt: 851591650
Run: 322332
Era : 2018D

One of our most

anomalous events!
(according to VAE)

High energy
constituents
anomaly




CMS Reconstruction

0m m m im 4m 5m &m im
Key:
Muon
= Electron

Hadron (e.g. Pion)
----- Photon

: lron return yoke interspersed
Transverse slice with Muon chambers

Oz Amram (Fermilab) 101



We typically formulate a search/inclusive
measurement as:

Py(xz) + s % P,(x)

[l LN

Bkg probability  Observable(s)  gjgnal strength  Signal
distribution you are fitting probability

distribution

NB: I'm will be sloppy with formalism, normalizations, nuisances, etc. for simplicity
Full formalism in paper / backup
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ML Model : Normallzmg Flows

Generate new samples

ur = fi(uy)

-
/\ /\AZ S

Ug 7‘ U1 f

Evaluate probability/likelihood, train flow

Maps a complex multivariate dist. to a standard
multivariate Gaussian via series of learnable invertible
maps

Generate: Sample from the Gaussians — apply maps ‘forward

Evaluate the density: Apply inverse maps to data, evaluate
likelihood of Gaussian

Density for fitting, generation for-visualization 103



* Significant advance in SotA

- First time Al showers not
~100% distinguishable from
Geant

Diffusion / Flow Matching

multiclass log-posterior

Pareto front

AUCs of binary classification: submission vs. GEANT4, dataset 3

models have best oo ELINLARN

performance s |

A1
TN
P

0.5 0.6 0.7 0.8
AUC
. GEANT4 —— Calo-VQ
® Trad eo betwee n q u a I Ity —— CaloDiffusion —- CaloScore distilled
—— L2LFlows MAF ----- CaloScore single-shot
=== conv. L2LFlows —— [CaloFlow teacher
CaloF

and generation time —
2410.21611

0.9 1.0

GEANT4 transformer

—— CaloPointFlow

—— CaloVAE+INN

- == Calo-VQ(norm)
CaloDREAM



https://arxiv.org/abs/2410.21611

* Calodiffusion performed very well in CaloChallenge
* New benchmark in quality at time of publication

* Top-2 in quality on all datasets in final evaluation
— QOut of 50 total submissions

Comparisons at time of publication Final CaloChallenge Results

Classifier AUC (low / high)

AUCs of binary classification: submission vs. GEANT4, dataset 3
Dataset CaloDiffusion CaloFlow CaloScore v2 highvlevel H bi ¥ HE
1 (photons)  0.62 / 0.62 0.70 / 0.55 0.76 / 0.59 omlevel j B s MM
1 (pions) 0.65 / 0.65 0.78 / 0.70 -/ - ! t o
2 (electrons) 0.56 / 0.56 0.80 / 0.80 0.60 / 0.62 NNResNet] 7 o petter |"‘| | | o ﬂ
3 (electrons) 0.56 / 0.57 0.91 /0.95 0.67 / 0.85 03 0.6 7 e 8 09 Lo
CaloDiffu
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Sparsity-Based Sampling

Compressing data naturally results in ‘smearing’

Instead of fractional sharing of energy, use fractions as probabilities for each cell to be non-zero

Random sample from these probabilities to pick non-zero cells
- Require at least one to be non-zero (avoid energy loss)

Split energy evenly among chosen cells

O 1 33%

0 m) @ = 3%

-~
- =

0 33%

/

\

106



HI-SIGMA

Pb f — Pb(a_f\m Pb(m)
/

(CATHODE) 1D Parametric Function

Features - 19.7 1" (8 TeV) + 5.1 fo" (7 TeV)
. b | - Sicrated &
= L P P ' 8 asf f_’f‘s S/(S+B) weighted sum
1.5',:)3‘_ o i ! e E = ¢ Data
AL ! ! -2 sp — S4B fits (weighted sum)
i E g 2.53 +eanee B component
i 1 (] r = 2lo
a.u. 4 : : o 2 } == 220
*"':. l H % -
"‘s., I i o 15F
M ; i ‘© s
e I 1 =z 1E
| i = E i =118
“"\_,,__. i + 05 ,=124.70=034 GeV
%) E
- Co v bvw v b by www Bvvww b s bvw v bwwiy
T e e
200 _ B component subtracted ]
100
| {
1 + ]
> s B } | | | [ 1 1 1 + i
SB . SR i SB m 110 115 120 125 130 135 140 145 150
I : m,”, (GeV)
We have been doing this anomaly detection 2109.00546
for a while, but mostly haven’t been using Oz Amram (Fermilab) 107

the learned density


https://arxiv.org/abs/2109.00546

HI-SIGMA
Pb(f\m)Pb(m) —+ 8 * Ps(f\m)Ps(m)

|

|

|

ML model trained on
data sidebands,
interpolated into SR

Resonant / hon-
smooth bkg’s can be
learned from MC

Standard

|

parametric ML model trained

functional fo

(eg polynomials)

rm on signal MC

And then you fit!

Oz Amram (Fermilab)

Standard

parametric function

(eg Gaussian)
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