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Embracing the Unexpected: 
AI Methods for Surprise Discoveries in Particle Physics

Oz Amram
Jan. 20th, 2026
SLAC Seminar
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Lots of Questions
Dark Matter?

 Neutrino 
Mass? And many more… 

Hierarchy 
Problem? 

Origin of SM 
parameters? 

Grand Unification?

Strong CP 
problem?

Baryogenesis? 

Matter
Anti-

matter
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LHC & CMS
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2012: A watershed
Higgs Discovery AlexNet

Fills in the last missing piece of the 
Standard Model

 → No more clear discovery targets!

Kickstarts deep learning AI/ML 
revolution
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2012: A watershed
Higgs Discovery AlexNet

Fills in the last missing piece of the 
Standard Model

 → No more clear discovery targets!

Kickstarts deep learning AI/ML 
revolution

Also the year 
I graduated 
from Gunn 

High School!
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Before & After

?

Pre-2012 Now
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Lacking clear targets, we should cast our net as 
wide as possible

And hope to get ‘lucky’!

“Luck is when preparation meets opportunity”

How can we prepare?
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Surprise Discoveries in Fundamental Physics

Radioactivity 
(1896)

Muon 
(1936)

“Who ordered that?” – I.I. Rabi

Cosmic Microwave 
Background (1964)

Arguably many others as well!
Kaon, Parity Violation, CP violation, neutrinos, neutrino oscillation, dark energy, ...
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History of a ‘lucky’ discovery
● In 2006 an undergrad was tasked with looking through 

archival data from the Parkes telescope to look for bright 
sources

● Computationally limited, they analyzed a portion of the data 
and produced ~1 plot a week, then discussed with their 
advisor 

The advisor 
could mostly 
point out the 
known sources / 
backgrounds

From 2024 historical reflections 
from discovery team (link)

https://link.springer.com/article/10.1007/s10509-024-04322-6
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● In 2006 an undergrad was tasked with looking through archival 
data from the Parkes telescope to look for bright sources

● Computationally limited, they analyzed a portion of the data 
each week and inspected the results ‘by eye’
–  ~1 plot a week, then discussed with their advisor 

Features mostly  
known sources / 
backgrounds

From 2024 historical reflections 
from discovery team (link)

History of a ‘lucky’ discovery

https://link.springer.com/article/10.1007/s10509-024-04322-6
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An Anomaly!
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An Anomaly!
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An Anomaly!

A signal 10 orders of 
magnitude larger than had 

ever been seen!
Almost missed because so bright it saturated 

digitization threshold of reconstruction software
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Confirmation
● This first discovery 

generated community 
interest & skepticism

● A few years later other ‘Fast 
Radio Bursts’ (FRB) were 
found by HTRU collaboration

● Today: several FRB’s per 
day  recorded

● Their astrophysical origin is 
still poorly understood
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Ingredients of a Serendipitous Discovery
● High quality scientific 

instrument/data
● Clear indication of outlier 

(luminosity)
● Understanding of backgrounds
● Short analysis timescale (weeks 

not years) 
● A curious young scientist 

(undergrad) inspecting the data
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Ingredients of a Serendipitous Discovery
● High quality scientific 

instrument/data
● Clear indication of outlier 

(luminosity)
● Understanding of backgrounds
● Short analysis timescale (weeks 

not years) 
● A curious young scientist 

(undergrad) inspecting the data

How can we scale these 
elements to modern 
massive, complex 

experiments??
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instrument/data
● Clear indication of outlier 
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Ingredient
● High quality scientific data

● Clear indication of outlier

● Understanding of 
backgrounds

● Short analysis timescale 

● A curious young scientist 
inspecting the data

AI Technology
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Ingredient
● High quality scientific data

● Clear indication of outlier

● Understanding of 
backgrounds

● Short analysis timescale 

● A curious young scientist 
inspecting the data

AI Technology

Anomaly Detection
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Anomaly Detection

How do you know which of these is ‘anomalous’?
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Anomaly Detection
● Focus on a single 

topology at a time 
● Entirely data-driven
● Novel ML methods to 

reduce bkg

arXiv: 2101.08320

https://arxiv.org/abs/2101.08320
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CMS Anomaly Search

● First CMS search to use anomaly detection

● Heavy resonance (A) → daughters B and C → 2 jets

● Employed five separate anomaly detection methods!

Physics result:
arXiv:2412.03747

ML details:
arXiv:2512.20395
Jet Uncertainties:
arXiv:2507.07775

https://arxiv.org/abs/2412.03747
https://arxiv.org/abs/2512.20395
https://arxiv.org/abs/2507.07775
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Jets

Sprays of O(50) particles produced via 
strong force

A playground for HEP-ML!
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Don’t Judge a Jet by its Cover

Typical jet
● One central axis (prong)
● From primary vertex
● ...

Anomalous jets
● Multiple prongs
● Displaced vertices
● ???

R WW  4q→ → ???
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~2σ

Without any substructure cuts  →
Signal swamped by QCD background… 

The Bump Hunt
Smoothly falling background

Localized resonance
 ‘bump’
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Cut on anomaly 
score

~2σ
>> 7σ 

Anomaly detection
finds hidden resonance!

The Bump Hunt
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How to identify 
anomalies?

Learn your bkg  →
look for outliers

Increasing Model Dependence 
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Looking for Outliers
Train ‘Autoencoder’ Training Sample from data sideband
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Looking for Outliers
Data from signal region

Take difference

Apply Autoencoder
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Variational Autoencoder (VAE)
● Jet represented by up 

to 100 highest p
T
 

constituents (p
x
, p

y
, p

z
)

● 100x3 matrix 
compressed to latent 
space of size 12 

● Trained on jets from 
data control region

Latent space forced to be Gaussian 
thru additional term in loss
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How to identify 
anomalies?

Learn your bkg  →
look for outliers

Look for local 
overdensities of signal
(collective anomalies) 

Increasing Model Dependence 
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Weak Supervision
● Train a classifier 

between signal-rich 
and background-
rich mixed samples

→ Learns to identify 
signal vs. bkg

● Performance 
changes with 
amount of signal in 
training data

Train on two mixed samples

[Metodiev, Nachman, Thaler, 1708.02949]

Aka ‘Classification Without 
Labels’ (CWoLa)

https://arxiv.org/abs/1708.02949
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Weak Supervision
● Train a classifier 

between signal-rich 
and background-
rich mixed samples

→ Learns to identify 
signal vs. bkg

● Performance 
changes with 
amount of signal in 
training data

Train on two mixed samples

[Metodiev, Nachman, Thaler, 1708.02949]

Aka ‘Classification Without 
Labels’ (CWoLa)

How can we construct these
 mixed samples in data?

→ 3 different methods employed

https://arxiv.org/abs/1708.02949
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CWoLa Hunting
● Assume signal is a narrow 

resonance
● Guess a mass window where it lives

– Train signal window vs. narrow 
sidebands using weak supervision

[Collins, Howe, Nachman 1902.02634]

0 1

● Repeat procedure, scanning over 
different mass windows 

– (2x6 windows used)

● Need to be careful about 
correlations btwn feats & mass

https://arxiv.org/abs/1902.02634
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?

?

Sig-rich
sample

Bkg-rich
sample

Classifier

Tag N’ Train 
Looks for pairs of 

anomalies, 
purifies samples

Data 
from SR

Interpolated
bkg

CATHODE
Gen AI to interpolate bkg 

into SR to construct sample

[OA & Suarez 2002.12376]

[Hallin et al 2109.00546]

https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2109.00546
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?

?

Sig-rich
sample

Bkg-rich
sample

Classifier

Very similar to 
coincident AD 

approach 
developed at SLAC!

Data 
from SR

Interpolated
bkg

CATHODE
Gen AI to interpolate bkg 

into SR to construct sample

[Hallin et al 2109.00546]

2301.11368

https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2301.11368
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How to identify 
anomalies?

Learn your bkg  →
look for outliers

Look for local 
overdensities

(collective anomalies)

Encode a ‘prior’ of 
potential signals →

look for similar

Increasing Model Dependence 
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Quasi Anomalous Knowledge (QUAK)

● Hybrid approach between fully 
model-indep. and standard search

● Encode a prior on what a potential 
signal may look like
– Use an AE trained on a variety of 

different signal MC’s
● Construct ‘QUAK space’: 

– Loss of signal AE vs bkg AE
● Select events with low sig loss and 

high bkg loss ‘Bkg-like’ Loss

‘S
ig

-li
ke

’ L
os

s

Hypothetical QUAK Space

[Park et al 2011.03550]

https://arxiv.org/abs/2011.03550
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Investigate features of most anomalous events!
Compare against regular events

~400 GeV 
daughter mass

b-tags 3-pronged

Most 
important 
feats

✔  Matches characteristics of injected signal

Understanding Anomalies

W’ → B’t, B’→ bZ
M

B’
 = 400 GeV
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Developed novel procedure 
to calibrate AI-classification 

of anomalous jets!

Uncertainties

Separate paper
arXiv:2507.07775

Use physics domain knowledge 
to factorize problem

Account for data/sim domain shift 

Method now standard 
within CMS, employed by 

multiple (5+) analyses!

https://arxiv.org/abs/2507.07775
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‘Rediscovering’ boosted top quarks in data with 
anomaly detection!

Anomaly 
Detection!

Validation on a real ‘anomaly’

Modified 
version* of 

TNT method 

*Training setup modified to target pair production rather than 
a heavy resonance, everything else unchanged
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Search Results
No significant anomalies from any of the five methods

QUAK & CATHODE 
results similar

Results from diff
SR’s shown
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Improved Sensitivity
● “How strong of a signal 

do I need to get an 
expected 3σ/5σ 
excess?”

● Anomaly detection 
improves sensitivity by 
~3-7x!

Compared to standard bump 
hunt
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What’s next?
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New Topologies
● Expand extend methods to 

new signatures beyond jets
● One program : Resonance + X 

– Motivated by ‘non-minimal’ 
dark/Higgs sector models

● Look for a resonance produced 
in association with other 
‘anomalous’ stuff (X)
– Eg di-tau+X or di-muon + X  

Example signal

X

arXiv:2504.13249 
Brennan, Vami, OA et al

Res

5-10x 
gains!

See also search for X→Higgs+X in backup

https://arxiv.org/abs/2504.13249
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Trigger
● Trigger rejects >99% of events
● What if we aren’t saving the new particles ?

Add AD to trigger!
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Anomaly Detection in Trigger
● Recently CMS & ATLAS have 

deployed anomaly detection 
triggers for the first time!

● Significant resource constraints!

– FPGA, operate at 40 MHz

AXOL1TL CMS-DP-2023-079  
CICADA  CMS-DP-2023-086
GELATO ATL-DAQ-SLIDE-2025-362

Deployed 
2024!

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2938881?ln=en
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An Anomalous Event

A unique AXOL1TL 
event!

Very busy, 11 jets + 1 
muon
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Future AD Research Questions

How can we broaden the scope of these AD searches in HEP?

– beyond resonances, using AD triggered data, ...

How can we maximize the physics reach of realtime AD systems?

– AD robust to changing conditions, build invariances, … 

Where else can these AD methods be applied?

– Other experiments, fault detection, data quality monitoring, ...
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Ingredient
● High quality scientific data

● Clear indication of outlier

● Understanding of 
backgrounds

● Short analysis timescale 

● A curious young scientist 
inspecting the data

AI Technology

Anomaly Detection

Generative Models
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Extending the Bump Hunt
● Classic bump hunt 

– Smoothly falling 
background, localized 
resonance

– 1D fit

● Generative models:
– Extend this idea to higher 

dimensions
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Gen-AI Measurements
Example 5D (!) fit of HH→ bbγγ 

2506.06438
OA & Szewc 

(binning only for visualization)

Optimal and 
includes 

data-driven 
bkg!

Currently 
used

● ‘HI-SIGMA’ 
– Bump hunt in high 

dimensions
● Extends ‘simulation 

based inference’ ideas to 
data-driven bkgs!

● More work on uncertainty 
quantification & 
robustness needed! 

40% 
gain!

https://arxiv.org/abs/2506.06438
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Ingredient
● High quality scientific data

● Clear indication of outlier

● Understanding of 
backgrounds

● Short analysis timescale 

● A curious young scientist 
inspecting the data

AI Technology

Anomaly Detection

Generative Models
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The Need for Fast Simulation
● Simulation crucial in all 

HEP analyses
● Computing budgets can’t 

keep up with data rate
● ML-based fast sim. 

needed for HL-LHC! 

How would our science 
change if simulations took 

a week/day/hour not ~6 months?

2410.21611

https://arxiv.org/abs/2410.21611
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Goal : Train a generative ML model to mimic physics based 
simulation (Geant) with high accuracy & significant speedup

‘CaloDiffusion’

Pure Noise Noise + Image Real Image

OA & Pedro
arXiv:2308.03876

https://arxiv.org/abs/2308.03876
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One Innovation : Irregular Geometries
● Real scientific instruments unlike perfect images, have irregular 

structure 
– Can’t natively apply your favorite ML tools (like convolutions)

● Learn an GLaM-orous embedding that maps input into regular 
cylindrical structure  

GLaM : Geometry Latent Mapping
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Average Showers

Geant

Calo
Diffusion
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CaloChallenge Results
● Calodiffusion 

matches Geant to 
very high fidelity
– Up to 1000x speed 

up
● Top-2 in quality 

across all 4 
CaloChallenge 
datasets (50 total 
submissions)
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CMS High Granularity Calorimeter

● Complicated 
hexagonal geometry!

● Very high granularity
– Up to 1 million cells in 

region of shower
● Extremely sparse & 

irregular 
– Novel methods to do 

sparsity-based 
sampling!

Individual Hexagon 
Wafers

Large Cells Small Cells
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Example HGCal Region : Layer 1

Small hex Large hex

Dot = 1 Cell
Colors denote different ‘rings’
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Example HGCal Region : Layer 39

Scintillator!
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Preliminary Results

Geant 
(CMS Simulation)

Calo
Diffusion



 65

Preliminary Results

Geant 
(CMS Simulation)

Calo
Diffusion

Very encouraging performance!

On track to deploy in HL-LHC

Similar methods applicable to other experiments!
Fixed target experiments, future colliders, surrogate models for optimization, ... 
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Ingredient
● High quality scientific data

● Clear indication of outlier

● Understanding of 
backgrounds

● Short analysis timescale 

● A curious young scientist 
inspecting the data

AI Technology

Anomaly Detection

Generative Models

AI Design Optimization
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We have excellent experiments 
now / near future!

But what if the particles are just 
at higher energy?

...
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Beyond the TeV Scale
2023 P5 Report

Slide from Hitoshi  Murayama

“Most exciting” 
future collider 

option in survey of 
US Early Career 
HEP researchers

OA & Cummings
2503.22834

https://www.usparticlephysics.org/2023-p5-report/
https://arxiv.org/abs/2503.22834
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Technical Challenges

● Cooling step : absorb + accelerate
● Each achieves few % cooling
→ Need O(100) steps
 

Complex designs with many 
parameters

Science Magazine

https://www.science.org/toc/science/383/6690
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Technical Challenges

● Cooling step : absorb + accelerate
● Each achieves few % cooling
→ Need O(100) steps
 

Complex designs with many 
parameters

Science Magazine

Required cooling performance 
not yet achieved!

https://www.science.org/toc/science/383/6690
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AI-Optimized Cooling Designs
~100s param cooling 

designs difficult to 
hand optimize

→ use Diff. Prog. 
Methods!

Will benefit from collaboration with 
SLAC Accelerator & Diff. Prog. Experts!

Potential for field-
shaping AI 

contribution!
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Ingredient
● High quality scientific data

● Clear indication of outlier

● Understanding of 
backgrounds

● Short analysis timescale 

● A curious young scientist 
inspecting the data

AI Technology

Anomaly Detection

Generative Models

AI Design Optimization

Foundation Models
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Foundation Models

Image source:
arXiv:2108.07258

https://arxiv.org/abs/2108.07258
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Foundation Models
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Foundation Models

A curious young 
undergrad inspecting 

& understanding 
the data
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How do we get there?

LLM Agents

Understands ‘the world’(?)

Given tasks, iterate, 
interpret

Physics 
Understanding

Models that understand 
our data

Can ‘manually inspect’ at 
scale
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How do we get there?

LLM Agents

Understands ‘the world’(?)

Given tasks, iterate, 
interpret

Physics 
Understanding

Models that understand 
our data

Can ‘manually inspect’ at 
scale

Bridge?

?
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How to develop understanding?
● One approach: 

Generation
● “What I cannot create I 

do not understand” – 
Feynman

● Many other possibilities!

Pre-train on 180M jets from CMS open 
data → 

fine tune on 100-1M Delphes Sim. jets

OA et al arXiv:2412.10504

Masking particles (2401.13537) , large supervised    
(2405.12972), mix gen. & sup. (2510.24066), …

Pre-train From Scratch

https://arxiv.org/abs/2412.10504
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2510.24066
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How to build the bridge?
PAPERCLIP (2403.08851)

Built a text ↔ data (image) mapping 
with a contrastive pre-training

How would we do 
something similar 
for HEP/? data?

What capabilities 
could it unlock?

https://arxiv.org/abs/2403.08851
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Ingredient
● High quality scientific 

data
● Clear indication of outlier
● Understanding of 

backgrounds
● Short analysis timescale 
● A curious young scientist 

inspecting the data

AI Technology

Anomaly Detection

Generative Models

AI Design Optimization

Foundation Models
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Fully connected → CNN → Graph → Transformer

‘Simple’ questions, complex answers

Previous Era: AI as Tool

Asking same question 
for the last ten years

“Is this a bottom quark 
jet?”

Now 200x better!



Oz Amram (Fermilab) 82

AI as a Paradigm Shift
Ask new questions, only possible with AI

How can I identify
the unexpected?

How can I reimagine
 scientific workflows?

How can I optimally
design experiments?

How can I deeply
understand my data?

Anomaly Detection

Generative Models
AI Design Optimization

Foundation Models
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Fully connected → CNN → Graph → Transformer

‘Simple’ questions, complex answers

AI as a tool AI as a paradigm shift
Ask new questions, only possible with AI
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1896

1936

1964

2006

2026?

Lets be ready for it!

Whatever comes next in 
fundamental physics will be surprising
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Conclusions

Lets let ourselves be surprised again!

Whatever comes next in particle physics will be surprising
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Backup



Oz Amram (Fermilab) 87

Decorrelate with Mjj

Cut with 
Flat Eff.

Bkg shape 
retained
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Cross Validation

Selected 
samples 

merged for 
bump hunt

Repeat x5 total

*Weakly supervised methods use additional layer 
of cross val for stability (see backup)
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Sensitivity
2 Pronged Signal 3 Pronged Signal
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Limits with Changing Eff.

Limit on # of signal 
events in SR from fit 
(N

exc
)

Find 
N

sig
(σ)= L*σ*ε(σ) 

that matches N
exc

 

→ σ is limit
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Input Features

VAE

Jet Constituents
p

x
, p

y
, p

z

CWoLa 
Hunting

Jet mass

τ
21

τ
32

τ
43

N
const

Leptonic 
energy frac.

Sub-jets b-tag
score

TNT

Same as 
CWoLa Hunting

CATHODE

Jet masses

τ
41

’s

-------------------
CATHODE-b

+ Subjet b-tag 
scores

QUAK

ρ = jet mass / p
T

τ
21

’s

τ
32

’s

τ
43

’s

N
const

’s

√τ
21

/τ
1

Sub-jets b-tag
scores

Hand-picked high-level featuresLow-level features



Oz Amram (Fermilab) 92

CATHODE
● Learn full multi-dim density 

P
bkg

( x | Mjj ) from sidebands & 
interpolate into SR
– ‘Normalizing Flow’

● Draw samples to construct bkg-
rich sample

● Weak supervision btwn data in 
SR and interpolated bkg 
samples

[Hallin et al 2109.00546]

https://arxiv.org/abs/2109.00546
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Tag N’ Train (TNT)
● Similar to CWoLa Hunting, but additional assumption 

that for signal both jets are anomalous
● Enhance purity of mixed samples by first tagging one jet 

each SR event with an autoencoder

?

?

[OA & Suarez 2002.12376]

Sig-rich
sample

Bkg-rich
sample

Classifier

Same jet p
T
 reweighting 

method to ensure no 
correlation with Mjj

AE is a CNN 
based on jet 

images

(full algo in backup)

https://arxiv.org/abs/2002.12376
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TNT Diagram
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Classic Strategy

~1.5k event classes

Data-MC Comparison

Look 
elsewhere 

effect

Using CMS MUSiC Search as an example

Categorize

http://2010.02984/
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● Re-using an AE from the dijet search
● Limits on Y→WW and Y→bqq

– ~Close to dedicated search for Y→ WW !

New!
2509.13635

?

X → HY 
Search

B2G-23-007

More Anomalous Jet Searches

Jet

https://arxiv.org/abs/2509.13635
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-23-007/index.html
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Limits
● Compute limits on benchmark 

from all anomaly methods on 
variety of signal models 
– Compare against inclusive 

& traditional model-specific 
approaches

– First-ever limits on several 
models!

● Anomaly detection improves 
limits by ~2-6x!
– Does not reach sensitivity of 

dedicated search

Very different sig. models!
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Analysis Overview

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New Physics
Preselected Data

2 large radius 
(AK8) jets 

Control region 
2.0 < |Δη| < 2.5 *

Signal Region
|Δη| < 1.3

Bkg: Standard Dijet 
Parameterization
 Signal: Double 

Crystal Ball

Bumps? Limits on signal 
models
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QCD Bkg.W’→ B’t → bqq bqqX→ YY → qq qq

● Compute correlation coefficients between different anomaly 
scores

● Relatively low correlations → methods are complementary!

“Are these five methods just learning the same thing?”
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One of our most
 anomalous events!

(according to VAE)

Mjj = 2.5 TeV
Evt: 851591650
Run: 322332
Era : 2018D

2-pronged anomaly

High energy 
constituents 

anomaly
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CMS Reconstruction
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Standard Measurements
We typically formulate a search/inclusive 

measurement as: 

Bkg probability 
distribution

Signal 
probability 
distribution

Signal strengthObservable(s) 
you are fitting

NB: I’m will be sloppy with formalism, normalizations, nuisances, etc. for simplicity
Full formalism in paper / backup
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ML Model : Normalizing Flows

● Maps a complex multivariate dist. to a standard 
multivariate Gaussian via series of learnable invertible 
maps

● Generate: Sample from the Gaussians → apply maps ‘forward’
● Evaluate the density: Apply inverse maps to data, evaluate 

likelihood of Gaussian
● Density for fitting, generation for visualization 
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CaloChallenge Results
● Significant advance in SotA

– First time AI showers not 
~100% distinguishable from 
Geant

● Diffusion / Flow Matching  
models have best 
performance

● Tradeoff between quality 
and generation time

2410.21611

https://arxiv.org/abs/2410.21611
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Performance Comparison
● Calodiffusion performed very well in CaloChallenge
● New benchmark in quality at time of publication
● Top-2 in quality on all datasets in final evaluation

– Out of 50 total submissions

Comparisons at time of publication

CaloDiffu

Final CaloChallenge Results
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Sparsity-Based Sampling
● Compressing data naturally results in ‘smearing’

● Instead of fractional sharing of energy, use fractions as probabilities for each cell to be non-zero

● Random sample from these probabilities to pick non-zero cells
– Require at least one to be non-zero (avoid energy loss)

● Split energy evenly among chosen cells

1

0

000

1 33%

33%

33%

...
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HI-SIGMA

We have been doing this anomaly detection 
for a while, but mostly haven’t been using 
the learned density

Features
(CATHODE)

2109.00546

1D Parametric Function

https://arxiv.org/abs/2109.00546
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ML model trained on 
data sidebands, 

interpolated into SR

Standard 
parametric 

functional form 
(eg polynomials)

ML model trained 
on signal MC

Standard 
parametric function 

(eg Gaussian)

And then you fit!

HI-SIGMA

Resonant / non-
smooth bkg’s can be 

learned from MC
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