Generators and Electronuclear Data SLAC mini-workshop

Alex Friedland

March 11, 2019

What's the motivation?

- It is "standard lore" that DUNE (Deep Underground Neutrino Experiment) needs them
 - \$1B+ international project, the flagship of the US domestic HEP program for the next 10-15 years
 - 1,000+ members from 30+ countries, and growing

Goal: precision studies of neutrino oscillations as a function of energy

 If the energy could be accurately measured with a near and far detector, we wouldn't need to know much about cross sections

In fact, we don't even have to wait for DUNE

- Consider the NOvA experiment (Fermilab to Northern Minnesota, 810 km baseline)
- Good sensitivity to the "atmospheric" parameters $(\theta_{23} \text{ and } \Delta m_{23}^2)$

NOvA at Neutrino 2016

P. Vahle, Neutrino 2016

Best Fit (in NH): $\left|\Delta m_{32}^2\right| = 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

18

Maximal mixing excluded at 2.5σ

NOvA at Neutrino 2018

Refined energy reconstruction

Maximal mixing is no longer strongly disfavored

Measuring neutrino energy at DUNE

- In the beam of 1-4 GeV, a variety of final states are produced, with protons, pions, and neutrons (see Ulrich's talk)
- Because of this, DUNE has to use the calorimetric method
- As a calorimetric detector DUNE is not perfectly hermetic
- There are several missing energy channels, and they dictate energy resolution (see Shirley's talk)

see arXiv:1811.06159, 10.1103/PhysRevD.99.036009

How cross section uncertainties enter oscillation studies

- Generator predictions are used to fill the missing information (subthreshold energy deposits, missing particle-ID info, nuclear breakup by wandering neutrons, etc, etc)
- Accurate predictions for both charge lepton and the hadronic system (energies, composition) are key
- Mistakes can have profound consequences

Neutrino scattering at several GeV

 A number of physical processes: quasi-elastic, resonant and nonresonant pion production, DIS-like, multi-nucleon. Generator codes, e.g. GENIE, try to model this physics.

- We need to test/validate all this physics as much as possible
 - how each component is constrained by the world's best data

use electron scattering

Final electron momenta, E_i=1.93 GeV

- Common physics includes
 - Initial nucleon momentum distribution (spectral function)
 - Final state interactions
 - Hadronization at several GeV, meson exchange currents, etc
- GENIE generator predictions show dramatic discrepancies with a variety inclusive electron scattering data
 - Artur Ankowski, A.F., Shirley Li, the last 2 years

Electron scattering comparison

Everything beyond the QE peak is in dramatic disagreement

Different kinematic regimes

 Chronic problems with many other datasets.

Mapping out the pattern of discrepancies

Opportunity to study this physics at SLAC

- Electron beam energy in S30XL is 4 GeV, ideal range to make measurements for DUNE
- LDMX happens to have potentially advantageous characteristics: wide angular acceptance of the produced particles (p, π) and good momentum resolution
- The key, as already mentioned, is to gather detailed information about the hadronic system, not only inclusive data
- The idea was discussed at PINS 2017, presented in a talk to LDMX collaboration in 2017, to DOE and SLAC LDRD in 2018

Opportunity to study this physics at SLAC

- Plan of action:
 - Generate events throughout the regimes of interest (QE and beyond), with as few cuts at the generator level as possible
 - Combine with detector simulations. Establish how much of the interesting physics can be covered under baseline LDMX detector assumptions.
 - Think through the origin of various limitations. Anything that was imposed because the design thought only about dark stuff? Anything that could be improved with a modest fee?
 - The results should tell us whether LDMX is indeed capable of a dual physics program, or if a dedicated experiment would be preferred

