Uses of electron scattering data in neutrino oscillation experiments

Kendall Mahn Michigan State University

Current:

Atmospheric: Super-Kamiokande, IceCube

Accelerator: T2K, NOvA, Short-Baseline Neutrino Program (SBN)

Current program is broad.

Neutrino oscillation, exotica (e.g. sterile neutrino, dark matter searches), proton decay

Future:

Accelerator/Atmospheric: Hyper-Kamiokande, Deep Underground Neutrino Experiment Signal (or background) processes are 0.1-20 GeV charged current (CC) or neutral current (NC) neutrino or antineutrino interactions for **atmospheric and accelerator based programs**

Processes in Neutrino Scattering

- muon or electron (+)
- proton (neutron)

N

Ν

N',N'

N, N

Processes in Neutrino Scattering

Neutrino oscillation analyses rely on neutrino cross section models

Neutrino oscillation analyses rely on neutrino cross section models

Neutrino oscillation analyses rely on neutrino cross section models

Cross section (true kinematics)

Efficiency (true kinematics)

Needs: Energy estimation

- Oscillation depends on energy
 - Estimate from hadronic and/or leptonic information

Needs: Energy estimation

Nuclear effects bias true and estimated neutrino energy

$$E_{\nu}^{QE} = \frac{m_{p}^{2} - m_{n}'^{2} - m_{\mu}^{2} + 2m'_{n}E_{\mu}}{2(m'_{n} - E_{\mu} + p_{\mu}\cos\theta_{\mu})} \qquad T2K, PRL 112, 181801 (2014)$$

$$\boxed{\text{Requirement for model:}}_{\text{Correct mix of processes per topology}} \quad \text{True - reconstructed kinematic relationship}} \qquad \boxed{\text{V}_{FD}^{\alpha \to \beta}(E_{reco}) = \sum_{i} \phi_{\alpha}(E_{true}) \times \sigma_{\beta}^{i}(E_{true}) \times P_{\alpha\beta}(E_{true}) \times \epsilon_{\beta}(E_{true}) \times R_{i}(E_{true}; E_{reco})} \qquad T2K, PRL 112, 181801 (2014)$$

For more details, see NuInt2018 and NuFact2018 meetings which have talks from NOvA, T2K, GENIE, NuWro and NUISANCE efforts

Set of models

May include validation against various data sets, including electron scattering

Not complete list of theory groups who try to do this: GiBUU, Benhar et. al, SuSA

> This makes approximations or simplifications (e.g. factorization? right degrees of freedom?)

data directly 12

Example: existing disagreement

- Simulations are using inclusive calculations (quasielastic plus 2p2h plus pion production) with a fragmentation model, plus an FSI cascade or transport.
- Example: Disagreements in semi-inclusive data

- OK, so this model doesn't agree... well none of them do!
- We need real semi-inclusive theory for the hadronic state (NOvA, SBN DUNE... and T2K's neutron tagging...)
- We need to question simplifications/approximations/ extrapolations

Efforts to apply electron scattering

Possibly incomplete list of effort, in addition to theory groups:

Experiments at JLab: JUPITER (E04-001), e-Ar experiment (E12-14-012), Data Mining with CLAS

Software packages ("generators"): GiBUU, NuWro, GENIE

Other external groups: example: Bodek, Cai: <u>https://arxiv.org/</u> <u>abs/1801.07975</u>

Example: Data Mining with CLAS

- 1 5 GeV electron beam,
- (almost) 4π acceptance,
- Charged particles (8°-143°): Toroidal field + tracking, TOF, Cerenkov, and EM Calorimeter,
- Neutral particles: EM Calorimeter (8°-75°) and TOF (8°-143°).
- Low detection threshold (~300MeV/c),
- OPEN TRIGGER !

Example: E4Nu electron scattering effort

Target	Beam Energy, GeV (# Triggers x 10 ^{allot!})		
	1.161	2.261	4.461
³ He	141	217	186
⁴ He	-	333	445
¹² C	62	238	310
⁵⁶ Fe	-	23	30
CH ₂	10	35	21
Empty Cell	19	69	33

+ CLAS EG2 Experiment: 5 GeV on d, ¹²C, ²⁷Al, ⁵⁶Fe, ²⁰⁸Pb

Approved proposal with CLAS12 C12-17-006

Targets:

⁴He, ¹²C, ¹⁶O, <u>⁴⁰Ar</u>, ²⁰⁸Pb

Beam Energies:

1.1, 2.2, (3.3), 4.4, 6.6 GeV

CLAS12 Spectrometer:

- Luminosity: x10 higher than CLAS6 !
- Charged Particles: 5° 120°
- Neutrons: 5° 120° + 160° 170°
- Threshold: ~300 MeV/c

=> High stat. semi-inclusive and exclusive data sets on multiple

1

0

2

3

4

5

E_v [GeV]

6

Energy estimator (E4Nu)

- Comparison of (2.2 GeV, fixed energy) electron scattering data (corrected for Mott xsec)
- acceptance corrections included.

• CC0π signal.

- Update will include eA data to eA GENIE (and GiBUU), then nuA NEUT, GENIE comparisons
 - Factor of ~two in feeddown tail is potentially a big issue

Electron scattering data challenges

 What is different for QE? Mott cross section; radiative corrections; Coulomb corrections on the outgoing lepton; struck nucleon (p vs. n) and axial component

This still takes a very talented graduate student + postdoc months with generator people to code up

Electron scattering data challenges

- What is different for QE? Mott cross section; radiative corrections; Coulomb corrections on the outgoing lepton; struck nucleon (p vs. n) and axial component
- What about 2p2h? Resonant? not as easy as just 'turning on or off' axial part.
 - Example: rate of production for the Delta elastic scattering (protons to neutrons) may be different.
 - Need to check exclusive channels to understand applicability.
- Statements from a few theory groups that measurements of exclusive processes may be important for resonance model development (e.g: e,pi, e,p,pi)

Rampant speculation on impact

- Generally, uncertainties on the vector part of the cross section are not an issue in oscillation analyses
- What is a problem is if energy dependent effects are misattributed
- Example with resonance model:
 - Retuning resonance model may make dramatic changes to vector part.
 - But, model builders tune to neutrino bubble chamber data. The axial part compensates and rates may not change at neutrino scattering experiments.
 - But^2, as we move to precision experiments, shifting vector uncertainty to axial will affect neutrino vs. antineutrino rates (and perhaps dCP)

Summary Personal view

- It is very important to make sure that neutrino experiments use models properly validated with electron scattering data
 - Validation of semi->fully exclusive approximate simulations
- It does not seem as easy as I hoped to apply what we learn directly to neutrino experiments. But that's never stopped us before!
 - Need careful investment (simpler interface for theory? other tools? a wall of documentation?) to propagate and test impact

Thank you to the organizers for the invitation!

Speaker supported by:

Department of Energy

Michigan State University

Backup slides