

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Electrons 4 neutrinos at Mainz?

Federico Sanchez Université de Genève

Disclaimer

• This is just a very (very) preliminary thinking based on informal discussions with researches at Mainz.

Mami @ Mainz

Mami @ Mainz

- We might be interested in low currents. The currents in Mami vary from 10pA to 100µA:
 - minimum current 6 x10⁶ electrons/seconds
 - Minimum rate is ~1 electron/100 ns.
 - reference time is the drift velocity of electrons and ions.
 - ~ few 10^6 interactions in 10^7 s.
 - this is already a nice statistics and it would be more for lower scattered angles.
- Beam structure is also almost continuous with few ns gaps, so in the case of low intensities we will be dealing with almost 1 electron per time.

Idea

- Exchange acceptance by resolution:
 - give up on high precision trackers.
 - have high acceptance:
 - low energy pions and protons. (neutrons?)
 - close to 4π acceptance.
 - Possibility to exchange targets.
- Develop detectors that can be used both in electron scattering and neutrino interactions.
- Low cost.

4π acceptance?

Low energy threshold

Typical detector threshold is 450 MeV/c (probably ~200 in LiqAr)

Information about FSI interactions

Information fermi model

Energy needed for calorimetric reconstruction: 400 MeV/c proton is ~80 MeV kinetic energy.

Relation between total energy and visible energy.

Threshold & acceptance

- New transverse variables have shown their potential to pin-down nuclear models.
- Higher acceptance in angle and momentum will allow us to monitor different regimes of nuclear dynamics and provide better models.
 - Iow momentum \rightarrow FSI
 - high angle \rightarrow large fermi momentum.

Light readout

Affordable technology: 2000 \$ / 65000 Channels It can be operated with almost any gas (different target nuclei) It runs better at high pressures contrary to charge amplification readouts.

Many options being explored:

- CCD, MediPix, MAPMT readouts.
- CF₄ N₂ as scintillators.
- Solid scintillator layer.

TPC detector

What type of resolutions we could get? Neutrinos are ~ 10%

(0)

Plus Lower thresholds. full angular acceptance Simple design

Minus

Non-uniform acceptance Ion feed back and field distortions

Can we observe the nuclear recoil?

TPC detector: Option 2

Plus No ion feed-back Easy to replace the target Uniform acceptance (same interaction point)

Minus

Not a full acceptance in p and angle More complex field cage design. Less similar to v experiment.

R&D at UniGe

- Borrowed the HPTPC developed at IFAE(Barcelona).
- Chamber is 20x20x20 cm³ with electroluminescence grid.
- Operated few years ago with APD readout and Xenon.
- Start a readout with MA-PMT and then try to implement a Medix readout.

JINST 10 (2015) no.03, P03008

in a magnet

Even a 1bar TPC field cage from HARP is available

0.7 T solenoid magnet at CERN used for HARP and testbeds.

Some rough numbers

- Very crude cross-section estimation (θ > 30°) in carbon ~ 10⁻²⁹ cm². I need more precise calculations (GiBUU?)
- Probability of interaction in the gas (1e⁻³ g/cm³) is ~5x10⁻⁸/meter in a 1 bar detector.
 - It is a feasible number to get sufficient interactions.
 - The ratio of electrons to interacting electrons is very large (issues with detector performance).

Next steps

- It does not look a crazy idea but it needs refinement.
- Convince Mami this is an attractive experiment. Some simulations are needed to clarify:
 - S/N background in the TPC detector and effect on the TPC performance.
 - Sensitivity of detector to final states in the two configurations.
- Continue with the TPC R&D.
- Fine tune the physics reach of the experiment,
- Look for partners.
- Make a proposal.