Introduction

H. A. Tanaka

v-A scattering:

- Accelerator-based neutrino oscillation experiments need to:
 - Tag the flavor of neutrino interactions
 - Determine the energy of the incident neutrino from the outgoing particles
- Arises from the basic phenomenology of neutrino oscillations
 - Neutrino flavor change a function of propagation distance (L) and neutrino energy (E)
 - Flavor content vs. energy allows us to extract the fundamental mixing/mass parameters
- The modeling of v-A (neutrino-Nucleus) scattering is now at the forefront
 - Effectively all neutrinos in experiments are observed through V-A interactions
 - Neutrino flavor change in several channels is well established
 - Next steps, such as CP violation and mass ordering measurements, require precise understanding of the flavor change as a function of neutrino energy

Complications in v-A interactions

- A nucleus is a bound system of nucleons
- A few categories of non-factorizable effects:
 - Initial state dynamics (Fermi motion and binding of nucleons)
 - Interaction (multi-body currents)
 - Propagation of particles in nucleus (dense hadronic) medium ("final state interactions")
- Many commonly used models nonetheless factorize:
 - Consider a target nucleon with kinematics drawn according to initial state model
 - Select an interaction channel between the neutrino and nucleon and determine final state
 - Propagate final state particles through the nucleus and determine exiting/visible particles
- Experimental challenges:
 - Fundamental: energy of incident neutrino is not known and must be reconstructed
 - Practically:
 - energy spectrum of incident neutrinos is broad typically with large uncertainty (>10%)
 - What we can measure often relies on the model we are trying to understand

Why e-A scattering?

• The same complications arise in e-A scattering

• Many of the same modeling issues can be studied in a system where:

- Kinematics are much better understood (incoming electron energy is a priori known)
- Other experimental issues (incoming beam, etc.) are better controlled
- For every v-A process we study, would like to have corresponding e-A study

Personal view/prejudice

RESONANCI

- "for every v-A process we study, would like to have corresponding e-A study
- comparable/better particle tracking/id to the v-A experiments we use
 - Select particular outgoing particle state and kinematic configruation
 - Measure kinematic (sometimes correlated) among outgoing particles
 - Sufficient precision on outgoing electron kinematics to determine four-momentum transfer
- To me, this means:
 - Electron beam with very well defined energy and count
 - Localized target, interchangeable amongst nuclei of interest (H, C, O, Ar . . . ?)
 - Full tracking acceptance with particle identification comparable to LAr detector
 - Calorimetry to tag photons, and possibly neutrons

Goals of Meeting

- Review:
 - S30XL ("Sector 30 Transfer Line") beam
 - LDMX detector and potential modifications and enhancements
- Is the S30XL beam suitable for performing e-A studies useful for the neutrino program?
- Is the LDMX detector a suitable starting point for a detector for such studies?
 - Are modifications needed?
 - Can suitable modifications be accommodated without comprising dark sector program?
 - Alternatively, are there suitable configurations that can be switched
 - Or is it better to start from scratch with a new detector concept
- Does the facility/detector offer capabilities beyond programs currently envisaged?

Agenda

9:00 AM → 9:05 AM	Introduction Speaker: Hirohisa Tanaka (SLAC)	© 5m
9:05 AM → 9:35 AM	Neutrino-Nuclear Generators (20'+10') Speaker: Mosel Ulrich	(§ 30m
9:35 AM → 9:50 AM	Uses of electron scattering for neutrino oscillation experimentss Speaker: Kendall Mahn	③15m
9:50 AM → 10:05 AM	Prospects for eN measurements at Mainz Speaker: Federico Sanchez	© 15m
10:05 AM → 10:20 AN	1 Discussion	©15m
10:20 AM → 10:45 AN	1 Final States & Energy Reconstruction (15'+10') Speaker: Shirley Li (SLAC)	© 25m
10:45 AM → 11:10 AN	1 Generators and Electronuclear Data (15'+10') Speaker: Alexander Friedland (SLAC)	© 25m
11:10 AM → 11:25 AN	Coffee Break	③ 15m
11:25 AM → 11:50 AN	Sector 30 Transfer Line at SLAC (15'+10') Speakers: Thomas Markiewicz (SLAC), Tor Raubenheimer (SLAC)	©25m
11:50 AM → 12:10 PM	LDMX Performance and First Look at eN Measurements Speaker: Nhan Tran (Fermilab)	© 20m
12:10 PM → 12:35 PM	Adding on to LDMX (10'+15) Speaker: Timothy Nelson (SLAC)	© 25m
12:35 PM → 12:55 PM	1 Discussion	© 20m
12:55 PM → 1:25 PM	Lunch and additional discussion	③ 30m