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VWhere we are

* | HC has achieved a lot.

* Discovered the

Looks like Higgs
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VWhere we are

C has achieved a lot.

* Discovered the Higgs boson, completed the SM.

* EXxplored TeV frontier in many ways.
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VWhere we are

* | HC has achieved a lot.

* Discovered the Higgs boson, completed the SM.

* Explored TeV frontier in many ways.

* SO, what’s next?




Still confused

Dark matter
Origin of the weak scale

Matter > anti-matter

Inflation Dark energy

flavor

Many ideas, no confirmation.

Yes, we should come up with more.
Experimental guidance will be so much needed!




For now (and next decades)
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For now (and next decades)
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Central question: how to extract max info from this mountain of data”?




Precision

Are we really sure the SM is it appears to be”?

This Is the “bread and butter”.




Prime target, the HIggs
DOSON




Why focusing on Higgs”

Higgs is confusing.

Sure, the math is simple.
It does not give us clues for a deeper understanding.

Different from other SM particles:
gauge boson (gauge symmetry), fermion (chiral symmetry)




Why focusing on Higgs”

Higgs Is confusing.

Sure, the math is simple.
It does not give us clues for a deeper understanding.

Different from other SM particles:
gauge boson (gauge symmetry), fermion (chiral symmetry)

Maybe not as simple as it seems”?

s it elementary (like electron) or composite (like proton or pion)?

Is the Higgs the only spin-0 particle, or there are similar ones”?




HIggs coupling

Higgs coupling other SM particles:

CMS 138 b (13 TeV)
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Eventually at the
LHC

Higgs couplings. Presently, known to about 10%
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HIggs potential

V(g)

Higgs field value
in our universe

an alternative
potential

Standard Model
potential

Current experimental
knowledge

Self-coupling

Need to go beyond this

A big focus for LHC




Comments on di-Higgs

Self-coupling

Unigque kind of coupling.
Important to observe it!




Comments on di-Higgs

Self-coupling

Unigque kind of coupling.
Important to observe it!

However, is this also a unigue place to look for new physics”




It is unlikely new physics only shows up in self-coupling.

New physics often induce changes in
other Higgs coupling, such as hZ

Self-coupling




N// vs HIggs self-coupling
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Modify H-Z coupling = 0, Modify Higgs self-coupling = 5/13




N// vs HIggs self-coupling

1
_ (HT 2 _ (HTH)3
5 (H'oH) S (H'H)
Modify H-Z coupling = 0, Modify Higgs self-coupling = 5/13

No special symmetry, both will generally be there.
All dim-6 operator = similar size of modification

H-Z coupling much better measured, in principle more
sensitive.




N// vs HIggs self-coupling

1
_ (HT 2 _ (HTH)3
5 (H'oH) S (H'H)
Modify H-Z coupling = 0, Modify Higgs self-coupling = 5/13

However, 0z, & g, , while §,_is not related to A3 sM

With some tuning, one can find models in which 0, > 0,




Example: EVW phase transition

Real Scalar Singlet Model  A. Long, P. Huang and LTW
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Example: EVW phase transition

Real Scalar Singlet Model

A. Long, P. Huang and LTW
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di-Higgs search for resonances

W, Z h, t bt

X,spin0, 1,2 X

W, Z h, t b7

From for heavy X (~TeV), as a consequence of Goldstone
equivalence theorem and SU(2) invariance,

the decay BR can be fixed

For example, for spin O and spin 2 resonances:
BR(X - ZZ) ~ BR(X — hh) ~ 0.5 x BR(X - WW)

Is there a case in which di-higgs has an advantage?




Busy HIggs signal

Now consider coupling:

2
S(H'H)", withn > 1 H'H = - ((v +h)* + Zﬁ)
We have:
SH'H x (v*)"'S (zicﬁ (T) + h? (T) + 4h? (Z) +. )

And:
(S — hh):T(S = WW):T'(S = ZZ)=(2n—1)*:2:1

An enhancement for the di-Higgs channel.




Could make a difference
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Could make a difference

o (pp—S)[pb]

Cn

LD A2n_3S(HTH)n with n > 2.
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Dashed: di-gauge boson

Solid: di-Higgs

Peiran Li, Zhen Liu, LTW in progress

Caution: a rather special case. Not a generic signal.




What can (HL)-LHC do”

Rare processes

Unlikely, but seeing one can teach us a lot.

Large luminosity leads to big improvements.




HIL -LHC as particle factories
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Promising for rare decay
with distinct final state!




HIL -LHC as particle factories

proton - (anti)proton cross sections
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HIgQS exotic decays

Decay Topologies

Decay mode F;
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HIgQS exotic decays

Decay Topologies

Decay mode F;
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HIgQS exotic decays

Decay Topologies

Decay mode F;
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HIgQgS exotic decays
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Decay Topologies Decay mode F; Decay Topologies Decay mode F;
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An Interesting alternative

Model of a landscape, N scalars ¢,.

If each scalar has two vacua = 2N vacua

Can be a large landscape for N >> 1 (e.g. N~102)

R.-T. D’Agnolo, M. Ettengruber, LTW, 2512.18001
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Connection to the Higgs, which couples to the scalars
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An Interesting alternative

Model of a landscape, N scalars ¢,.

If each scalar has two vacua = 2N vacua

Can be a large landscape for N >> 1 (e.g. N~102)

Connection to the Higgs, which couples to the scalars

I
S OHHY ngbigbj +V(p), N>1
ij

The scalars are also at weak scale. Obtaining mass from EWSB.

R.-T. D’Agnolo, M. Ettengruber, LTW, 2512.18001




Interesting alternative

Higgs decay into landscape scalars, long cascades
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Interesting alternative

Higgs decay into landscape scalars, long cascades

~ bblceltT




Decay from the HIggs
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Final State Particles

Longer cascade, higher final state multiplicity, softer decay products.




Interesting alternative

Higgs decay into landscape scalars, long cascades

bblcéltt

. bblcéltT bb/céltt

b; b
h ; h
; bb/ccltt ;

Rate into a particular final decay chain « A% ~ 1/N? tiny.

bblcéltz

bbl/ccltt bblcéltT

le bblceltt

However, many possible channels, total h = scalars can be sizable!




Interesting alternative

Higgs decay into landscape scalars, long cascades
¢; . bblccltt &;

h ; h
i\ bblccltz -

Rate into a particular final decay chain « A% ~ 1/N? tiny.

bblcéltt
bb/céltt

¢

bblcéltz
bblcéltt

bbl/ccltt

le bblceltt

However, many possible channels, total h = scalars can be sizable!

= pbut not recontructing particular resonances.

Are we ready for this? S.Jung, Z. Liu, LTW, K. Xie 2109.03294




HIL -LHC as particle factories
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> 108 Higgses

Promising for rare decay

with distinct final state!

H. Bahl, S. Koren, LTW 2307.11154
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Unexpected: Form-factor
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Unexpected: Form-factor

Resonance




Unexpected: Form-factor

Resonance




Unexpected: Form-factor

Resonance




Unexpected: Form-factor

Quite exotic.

Similar to very broad resonance.
Could be of more general shape.
Are we ready for this?

Resonance




The next frontlier




The future

* Obviously, it would be great to have a new collider,
at higher energies and intensity.

Many proposals.

Many studies, recommendations. Snowmass/P5, European strategy...




L epton

Schematic of an
80 - 100 km

¢ long tunnel

colliders < TeV
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Studies of the main physics case quite mature.
| will highlight some important benchmarks.




Physics output

Lepton colliders ( < 1 TeV). ITF Snowmass 2022

| : 100 ab~"/yr
\ 2x105 h/yr 1000 hh/yr
ReLiC

1037 -

10% ¢

10%°¢

\

6 /
K/ 10 fb _1/yr

\¥ 10ab~"/yr
ERLC

11ab~/yr

-100 fo = /yr

108 ttbar/yr

100

1000
Ecm(GeV)

Main physics output:

106 Higgses
Similar for XCC at 125 GeV

10° -1072 Zs
106 WW

109 ttar

Central theme: the electroweak scale




HIggs coupling

Higgs coupling other SM particles:

CMS 138 b (13 TeV)
® Observed |:|:1 SD (stat)
= +1 SD (stat @ syst) - =1 SD (syst)
— +2 SDs (stat @ syst)
— ; Stat Syst
Ky ——— 1.01010 =007 =007
KW7 " 1‘00—0.06 -0.04 -0.04
K27 '* 1‘00-0.03 -0.03  -0.01
G os0y 9% 4%
K17 -i'“ 0.91:007 w004 0%
KM7 —*— 1.11fg:;? tg:; 20.07
Ko e retz 0D
K97 —i— 0.93:007  +0.05 tg:g:
5| - no7ag B A
B s | 0.07:005 002 004

0 Oo+0.06 +0.05 +0.03

25
Parameter value
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R |
K ATLAS Run 2
i '.--Trﬁ Leptons Quarks |
D . on
B Force carriers Higgs boson |
——
e FIEE l
............ g
—e—H —e— By, =B,=0
| T -m- B, free, B, 20, x,<1
— ——— SM prediction
1= Parameter value not allowed
______________ A ———
| | | |
0.8 1 1.2 1.4 1.6
68% CL interval
I I
__________________________ qi
T T ------------- 1 | |
0 0.05 0.1 0.15 0.2

95% CL limit

Eventually at the
LHC

Higgs couplings. Presently, known to about 10%

3000 fb™

ATLAS andcMs [l stat. + Exp.
HL-LHC Projection + Theory

Parias  Powvs

01 02 03 04 _ 05
Expected relative uncertainty

1- afew %

Higgs factories needs to go meaningfully beyond this.




Signal for new physics

gexp — Ysm

Coupling deviation from the Standard Model, 0 =
Ism

2
Deviation generated by new physics: § ~ o (100 GeV)

2
|\/lnew physics

Onp - Coupling of new physics to the SM
Mhew physics © Mass scale of new physics

Measurement precision = sensitivity on 0 = reach for NP




Our target

Coupling to the SM

5 gexp a gSM

Ism
(100 GeV)?

5~ g2
NP , 22
Mnew physics

Ilev Mass of new physics




Our target

Direct search for NP

At the LHC

Coupling to the SM

5 gexp a gSM

Ism
(100 GeV)?

5~ g2
NP , 22
Mnew physics

1iev Mass of new physics




5 gexp a gSM

O U r targ et ?18(1)\2) GeV)?

S~ 2
8~ 0(1)% HL-LHC gNP

2
|\/lnew physics

Not a big surprise that no
deviation observed yet

Dil;gt search for NP
At the LHC

Coupling to the SM

1 TeV

Mass of new physics
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The HIggs measurements

B HL-LHC S2 + LEP/SLD B CEPC Z,00/WW;/240GeV,, | MILC 250GeV, B CLIC 380GeV, B VUC 3TeV,  wFCC-ee
(combined in all lepton collider scenarios) | il CEPC +360GeV B ILC +350GeV, ,+500GeV, | CLIC +1.5TeVys | MMUC 10TeV 1
Free H Width HWILC +1TeVy YV wiGiga-Z | [l CLIC +3TeVs Il MuC 125GeV g+10TeV 4
no H exotic decay Bl FCC-ee +365GeV 5 | subscripts denote luminosity in ab™", Z & WW denote Z-pole & WW threshold

1INV 1 1 WAV MY vV Y [ — E W

Higgs couplings
3

\ \HHH‘ \ \HHH‘ \ \HHH‘i

—
<
w
\ \HHH‘

RN
<
N

Z, W

Measuring crucial Higgs coupling up to 1073
Needs 106 Higgses




The HIggs measurements

Il HL-LHC S2 + LEP/SLD [l CEPC Z,,0/WW4/240GeV, H ILC 250GeV, M CLIC 380GeV, Il MuC 3TeV 4 w/FCC-ee
(combined in all lepton collider scenarios) | ll CEPC +360GeV, Il ILC +350GeV,+500GeV, | CLIC +1.5TeV,5 Il MuC 10TeV 4o
Free H Width W ILC +1TeVy YV wiGiga-Z | [l CLIC +3TeVs Il MuC 125GeV g+10TeV 4
no H exotic decay B FCC-ee +365GeV4 5 subscripts denote luminosity in ab~', Z & WW denote Z-pole & WW threshold

1072

ol y

Higgs width measurement




The HIggs measurements

M HL-LHC S2 + LEP/SLD

(combined in all lepton collider scenarios)

Free H Width

B ILC 250GeV,
HiLC +350G6V0'2+500G6V4
HILC +1TeVg </ w/Giga-Z

Il CLIC 380GeV,
Il CEPC +360GeV,

Bl CEPC Z,00/WW¢/240Ge V.
M CLIC +3TeVs

M CLIC +1.5TeV 5

B MuC 3TeV
Il MuC 10TeV 1o
. MuC 125GeV0_02+1 0TeV 10

O w/FCC-ee

no H exotic decay M FCC-ee +365GeV 5 |

subscripts denote luminosity in ab™", Z & WW denote Z-pole & WW threshold

Higgs couplings

ol y

Higgs width measurement

Free H Width
no H exotic decay

Significant impact on other

coupling measurement




s the Higgs composite”

SR AR RIERTEE o danana Perhgps the Higgs is similar to
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- % & . Would make it naturally light, since it is not
%4 Y . elementary.
7 % E If so, will be other composite resonances
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0 RS | " oma  Direct search for composite
’ \ ~ resonances
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B Higgs coupling measurements
1 TN EREEEE : Composite # elementary
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Different couplings




s the Higgs composite”

SR AR RIERTEE o danana Perhaps the Higgs is similar to
9 \ =1 - the pion?
- % & . Would make it naturally light, since it is not
%4 Y . elementary.
7 % E If so, will be other composite resonances
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0 RS | " oma  Direct search for composite
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Different couplings




95% C.L. limit on sin’y

s the Higgs boson alone”

HL-LHC

10

1074

il s s s sssssseny/ s s s s s s s EEEEEEEEEEEEEEEEEEEE s nnnn s A BT T T E T TS

I CLIC1 500
= CLIC,,,
up, 6 TeV, 5 ab™

.

Higgs couplings:
#%E8 HL-LHC
===+ HE-LHC
LHeC
<= LGy
=+ FCC-ee or CEPC
IiLC
... FcCee/eh/hh
==: CLIC

I | 1 1 l 1 1 1 30(xl) 1 | l

( \

10 12
mg [TeV]

Maybe Higgs boson has some
partners?

Will change Higgs behavior by interacting
with it.

Simplest example:

Higgs coupling to one other spin-0

bosoN




L Inear options

Lepton colliders ( < 1 TeV). ITF Snowmass 2022

\ 2x108 h/yr 1000 hh/yr
ReLiC

! 10 ab~/yr
ERLC

1037 .

10% ¢

100 ab ~'/yr

FCC CERC

108 WW/yr

" ab~/yr

M

10%°¢

1100 fbo ~1/yr

110 fo =1 /yr

100 200
ECM (GeV )

500

1000

Longitudinal polarization.
Better at resolving certain signals

Can go to higher energies




Higher energies, polarization

Higgs@FC WG September 2019

L LAy e — - -
di-Higgs single-Higgs
HL-LHC HL-LHC HL-LHC
. H
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E\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Y -
LE-FCC LE-FCC V4
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FCC-ee AN 33% - O O O m *
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............................... agn S
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........................................... 27% 38% ‘
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............................................ 9% i s
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68% CL bounds on K5 [%]  aiture coliders combined with HL-LHG

LD + DO + LHC ~ W= +ILC (500 GeV, 1.6+1.6/ab) [ +CLIC (1500 GeV, 2+0.5/ab) B +FCC-ee (365 GeV, 1.5/ab) e I
B+ HL-LHC (1geV, 3/ab) == +ILC (1000 GeV, 3.2+3.2/ab) +CLIC (3000 GeV, 4+1/ab) W CEPC (240 GeV, 20/ab)
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102
1073
107
10-°

1076
[Ceelr111 [Culi221 [Culi122 [Creli122 [Crel2211

4/ couplings

1072

107*

106
111331 [Cylr133 [Crel1133 [Crelz3n1 [Ceeln133 [Culaz22 [culz332

e
J. Blas, Y. Du, C. Grojean, J. Gu, V. Miralles, M. Peskin, J. Tan, M. Vos,, E. Vryonidou, 2206.08326




FPNhoton colliger

Marten Berger, Johannes Braathen, Gudrid Moortgat-Pick, and Georg
Weiglein, 2510.05012

—— XCC 280 GeV
—— XCC 380 GeV
—— Optical 380 GeV
—— Optical 550 GeV

5o 15 5
R

Di-Higgs events per 10 years

di-Higgs.
ok, ~ 5 % T. Barklow et. Al

Looking forward to the final words on these studies.




EVV phase transition

Real Scalar Singlet Model

T N
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hhh coupling: Asz/Azgm

A typical (simplest) model, Higgs mixes with a singlet




EVV phase transition
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EVV phase transition

Real Scalar Singlet Model

T 0§ 3
1 < <
f N | Bt current
< :
N 0.100¢
—_— = HL-LHC
2. | ;
N 0.001} it Higgs factories
L i _— . -~
104 S s | |
0.5 1.0 1.5 2.0 2.5

hhh coupling: Asz/Azgm

A typical (simplest) model, Higgs mixes with a singlet




EVV phase transition

Refpl Scalar Singlet Model

current

HL-LHC

5Zh ~ 0.1 %at

hZZ coupling: 6Z,
o
9
o

0.001 Higgs factories
10~4L, _ _ _ _
0.5 1.0 1.5 2.0 2.5
hhh coupling: As/A
1 TV LG Ping- Astlasu

A typical (simplest) model, Higgs mixes with a singlet




More to do in physics studies

* \What can further enrich the physics program??

* Searches complementary to LHC.

* Higgs rare decay, Z-pole flavor physics, ...

* Fixed target.

* | B B |

* Some studies already, need to do more.




The 10 TeV pCM frontier

Schematic of an

80 - 100 km
g long tunnel
%
R
‘ .
S Muon Collider
L >10TeV CoM
D ] ~ . ~10km circumference

wu Cooling Low Energ
Proton Channel 1 Acceleration
Source Channel




Study for 10 TeV pCM

* SO far, most studies are done in the context of muon
collider and 100 TeV pp collider.

* However, the point is really go to 10 TeV pCM

* Qualitatively, e+ e- and yy should work just as well.

* Needs more studies!




Why 10 TeV?




ete : 1-10s eV

* The energy frontier!

1037_
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Lepton colliders (> 1 TeV). ITF Snowmass 2022
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Naturalness

Fine-tuning o Mg,

10 TeV muon collider reach 5-10 beyond LHC.
~100 times better test of naturalness!




lop partner

Lijminosity Requirement with 10 Snowmass Years
NN EE , ,
: Pair production
10% ¢ : 110 ab~/yr
L New proposals reach = 0.45xEcwm
|
e < on il 11 86141 Examples:
_ : SUSY stop
- | :
v ! Composite T
5 1034 1100 fb =" /yr
Spectacular signal,
energetic final states.
107 [1of T' — Wb, Zt, ht
, No need for high lumi.
32/ -1
107 10 15 20 25 i
‘ Ecm(TeV)
LHC

A big step beyond the LHC!




Energy=precision

* [he effect of heavy new physics can be
parameterized by higher dimensional (EFT)
operators.

* Precision measurement targeting these operators.

* [heir effect grows at higher energies.

* e.9. If new physics lead to dim-6 operators

Higher energy = better sensitivity, better precision

10 TeV pCM can reach Ayp ~ 50 TeV




Top quark - Higgs coupling

Liu, Lyu, Mahbube, LTW 2308.06323

LHC EO .16
H-LHC T 003 -
ILC-500 e 20028 -
FCC-ee I 20081 -
FCC=hh £001 -
MuC-3 0r0%
MuC-10 000
_0.06  -0.04 "0.06

Higher energies lead to better precision.

Limited by precision on very energetic particles.
Should be similar to eTe™ and yy. Would be useful to verify!




Testing WIMP dark matter




Simplest WIMP model

T?;;;; Correct relic abundance
ERESA = Thermal targets

2.8 TeV Reach up to thermal target

2.0 TeV ~

14 TeV complete coverage for WIMP candidate

6.6 TeV

48.8'TeV
_ 16 TeV |:> Way beyond LHC reach.

DM in EW multiplet

Mitridate, Redi, Smirnov, Strumia, 1702.01141

S. Bottaro, D. Buttazzo, M. Costa, R. Franceschini, P. Panci, D.
Redigolo, L. Vittorio, 2107.09688




WIMP reach

T. Han, Z. Liu, X. Wang, LTW, 2009.11287, 2203.07351

Electroweak DM 2 reach
Vs =3,10, 14 TeV

| ' Thermal Target

05 3 5
m, [TeV]

Study for muon collider with full BIB still lacking.
Different challenge for e+ e- and yy.




Mono - X WW + MET  Disappearing
Track

HSCP

WIMP at wake field collider

i Doublet 50 (20 Triplet 50 (20
ete” round (20) ete” round p (20)
eTe” flat & ete” flat
e~ e~ round = e~ e~ round
e e flat < 5 e~ e flat
vy References L8 Ay References
L — 4L
e o Han 2009.11287 =& o Hand- 200911287
PP /5 =100 TeV ' Saito+ 1901.02987 .z PP Vs =100 TeV Saito+ 1901.02987
pp Vi=1Tev I | Thermal ATL-PHYS-PUB-2018-031 A PP V5 =14 TV — ATL-PHYS-PUB-2018-031
1 Higgsino
ete” round eTe” round
ete flat = ete flat
e~ e round = e~e” round
e~ e flat = e~e” flat
p + 7
s s whp
PP /5 =100 TeV Gori+ 1410.6287 PP Vs =100 TeV ] Gori+ 1410.6287
PP /5 =14 TeV | ATL-PHYS-PUB-2018-048 B ppseuT I— ATL-PHYS-PUB-2018-048
ete” round i ete” round
ete” flat - ete” flat
e~e” round : e~e” round B
e~ e flat : 10 ab™! i e e flat 10 ab™!
+ 2 ' g e}
Ko i Han+ 2009.11287 S Mo I Han-+ 2009.11287
PP /s =100 TeV ] I 30 ab—! Han-+ 1805.00015 = Pp Vs =100 TeV ] — = 30ab! Han+ 1805.00015
pp Vs =14V |1 3 ah-! Han-+ 1805.00015 pp s =1 ey (] 3ab! Han+- 1805.00015
ete” round ete” round
ete” flat ete” flat
e~ e~ round e~ e~ round
e~e” flat % e"e” flat
¥y 2 o
W s e W
PP /5 =100 TeV 3.4 ToV. TFengt 150502996 pp s =100 Tev 9.1 TV Feng+ 1505.02996
ppvs=uty (CZTZTZZ 130 1) ! CERN-EP-2022-029 pp Vs=1uTey [T A 139 ! CERN-EP-2022-029
1 2 3 4 5 1 2 3 4 5 6

Doublet mass m, = [TeV] Triplet mass m,+ [TeV]

Beam-beam does not affect reach too much.

So Chigusa, Simon Knapen, Toby Opferkuch, Inbar Savoray, Christiane Scherb,
Weishuang Linda Xu, 2512.09995




Flavor (CP)

Main question: what is the scale and mechanism flavor physics?




| epton flavor violation

Exp limit:  BR(u = 3e) < 10712

Constraint: %(el"ﬂ)(el“e), A > 2% 10? TeV

Exp limit:  BR(z = 3u) < 2.1 x 1078

C
Constraint: F(MFT)(/WM), A > 10 TeV
Flavor scale beyond weak scale. Sometime known as the “little hierarchy”

However, 10 TeV remains possible for new flavor physics!




Flavor violation: EFT study

S. Homiller, Q. Lu, M. Reece, 2203.08825, Smasher’s guide

|| T3“| )
T
eVl M uge-lT  Muse SINDRUM
1 I
L 125 GeV
0.01 |
Belle """~~~ &>"""""7~~ T “““““““
Belle-II . R 3 TeV
- - 6 TeV Lo
10~ : ! 14 TeV HH = T
' 100 TeV
10-6 | I
L = : R E i L] | ,u3e|[TeV 2]
10-8 10-7 10-6 10-5 104 0.001 A2
' i : tuT > L
Direct probe at muon colliders: MU i

Sensitivity comes from the high energy part. Similar reach for e+ e




How about “real” flavor
onysICS

* Most naive limit on scale of flavor physics A, > 100s TeV

* However, In many scenarios of flavor generation, there
are suppressions.

- : Arkarni-Hamed and Schmaltz, 9903417
* Extra-dimension. Arkani-Hamed, Dimopoulos, Dvali, March-Russell, 9811448
Fitzpatrick, Perez, Randall, 07101869 ...

* partial compositeness.  D. B. Kaplan, 1991

Rattazzi, Ricci 2402.09503
*

New flavorful resonances can appear around 10 TeV.

More work needed: models + collider pheno




| ooking ahead

Happening,right?

The European Strategy for Particle Physics:
2026 Update

A. The electron—positron Future Circular Collider (FCC-ee) is recommended as the preferred option for
the next flagship collider at CERN.

However, history taught us that there will still be a lot of
uncertainties ahead.

Other options, and steps beyond to 10 TeV pCM, will need to
e vigorously pursued.




Conclusion

* \\e are In uncertain times.

* Many unanswered guestions, no clear path forward.
* [here are also many opportunities

* Much more data from LHC to come.

* Many new proposals to study.

* [Ime to think big, think long term!




A lot to look forward to...



EXxtra




The HIggs measurements

Higgs couplings
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Are we ready for this”
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New ideas to trigger and tag on this kind of final states”?




Composite Higgs

Composite Higgs, 20

[

« 7 curves left-to-right:
CLIC1500

ILCs00

FCC-ee (Co)

CEPC

ILC1000

FCC-ee/hh/eh (Cq)
CLIC3000

FCC-hh/ee

Limited by precision on very energetic
particles.

Should be similar to eTe™ and yy
Good to verify!

Muon Collider 10 Tev
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Higgs couplings

Vff couplings Higgs couplings

Vff couplings
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A full suite of measurements

precision reach on effective couplings from SMEFT global fit
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Based on:
Collider Vs P (%] Lins
e /et ab~!
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500 GeV | £80/ + 30 4
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ILC-GigaZ | myz | £80/£30| 0.1
CLIC 380 GeV +80/0 1
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Simplest example:
HIgQgS + singlet

L D V(H)+ V(S) + AH"HS?

Form, < 0.5 X m,,
After EWSB, T'(h — s5)  (1v)? .

Can be significant since I')M° is very narrow.

f (§) = 0, missing energy

if (§) # 0, singlet mixes with Higgs, prefers to decay to
heavy fermion




Simplest example:
HIggS + singlet

< D V(H) + V(S) + AH HS?
For m, > my,, , integrating out singlet

= L(HT()H)2 and L(HULI)3
A2 A2




HIgQS to dark sector

Standard Dark . i}
Model <:>{Sector Higgs portal
- y y

" —

Decay back to SM

h—2-3 h—=>23-4 h—2-(143) Long lived particles
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Similarly: top rare decay

H. Bahl, S. Koren, LTW 2307.11154
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Similarly: top rare decay

H. Bahl, S. Koren, LTW 2307.11154
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Noyents @ HL-LHC
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BSM final states

mBSM|: 10 GeV, ANP|: 1TeV,c =1

1078

107

100

10 107
top-quark BR

1073 1072 107!

Range of lifetimes for S, N, and Z’
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Can have LLPs

Can use the other top as trigger




| ong lived particle (LLP)
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HIQQS porta\ lon
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X: LLP
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g lived particles

J. Liu, Z. Liu and LTW, 1805.05957
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J. Liv, Z. Liu, X. Wang and LTW, 2005.10836

Potential to do better, BR(h—XX) < 10-5




Observed 95% CL limiton B(H —SS)

ATLAS+CMS Preliminary

Hidden Sector (Feb 2025) 13-13.6 TeV
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Still room for new ideas.




HIgQgs self-coupling
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